<< Chapter < Page Chapter >> Page >

Relative humidity is related to the partial pressure of water vapor in the air. At 100% humidity, the partial pressure is equal to the vapor pressure, and no more water can enter the vapor phase. If the partial pressure is less than the vapor pressure, then evaporation will take place, as humidity is less than 100%. If the partial pressure is greater than the vapor pressure, condensation takes place. The capacity of air to “hold” water vapor is determined by the vapor pressure of water and has nothing to do with the properties of air.

Saturation vapor density of water
Temperature ( º C ) size 12{ \( °C \) } {} Vapor pressure (Pa) Saturation vapor density (g/m 3 )
−50 4.0 0.039
−20 1 . 04 × 10 2 size 12{1 "." "04" times "10" rSup { size 8{2} } } {} 0.89
−10 2 . 60 × 10 2 size 12{2 "." "60"´"10" rSup { size 8{2} } } {} 2.36
0 6 . 10 × 10 2 size 12{6 "." "10"´"10" rSup { size 8{2} } } {} 4.84
5 8 . 68 × 10 2 size 12{8 "." "68"´"10" rSup { size 8{2} } } {} 6.80
10 1 . 19 × 10 3 size 12{1 "." "19"´"10" rSup { size 8{3} } } {} 9.40
15 1 . 69 × 10 3 size 12{1 "." "69"´"10" rSup { size 8{3} } } {} 12.8
20 2 . 33 × 10 3 size 12{2 "." "33"´"10" rSup { size 8{3} } } {} 17.2
25 3 . 17 × 10 3 size 12{3 "." "17"´"10" rSup { size 8{3} } } {} 23.0
30 4 . 24 × 10 3 size 12{4 "." "24"´"10" rSup { size 8{3} } } {} 30.4
37 6 . 31 × 10 3 size 12{6 "." "31"´"10" rSup { size 8{3} } } {} 44.0
40 7 . 34 × 10 3 size 12{7 "." "34"´"10" rSup { size 8{3} } } {} 51.1
50 1 . 23 × 10 4 size 12{1 "." "23" times "10" rSup { size 8{4} } } {} 82.4
60 1 . 99 × 10 4 size 12{1 "." "99"´"10" rSup { size 8{4} } } {} 130
70 3 . 12 × 10 4 size 12{3 "." "12"´"10" rSup { size 8{4} } } {} 197
80 4 . 73 × 10 4 size 12{4 "." "73"´"10" rSup { size 8{4} } } {} 294
90 7 . 01 × 10 4 size 12{7 "." "01"´"10" rSup { size 8{4} } } {} 418
95 8 . 59 × 10 4 size 12{8 "." "59"´"10" rSup { size 8{4} } } {} 505
100 1 . 01 × 10 5 size 12{1 "." "99"´"10" rSup { size 8{5} } } {} 598
120 1 . 99 × 10 5 size 12{1 "." "99"´"10" rSup { size 8{5} } } {} 1095
150 4 . 76 × 10 5 size 12{4 "." "76"´"10" rSup { size 8{5} } } {} 2430
200 1 . 55 × 10 6 size 12{1 "." "55"´"10" rSup { size 8{6} } } {} 7090
220 2 . 32 × 10 6 size 12{2 "." "32"´"10" rSup { size 8{6} } } {} 10,200

Calculating density using vapor pressure

[link] gives the vapor pressure of water at 20 . 0 º C size 12{"20" "." 0°C} {} as 2 . 33 × 10 3 Pa . size 12{2 "." "33"´"10" rSup { size 8{3} } " Pa" "." } {} Use the ideal gas law to calculate the density of water vapor in g / m 3 size 12{g/m rSup { size 8{3} } } {} that would create a partial pressure equal to this vapor pressure. Compare the result with the saturation vapor density given in the table.

Strategy

To solve this problem, we need to break it down into a two steps. The partial pressure follows the ideal gas law,

PV = nRT, size 12{ size 11{ ital "PV"= ital "nRT"}} {}

where n size 12{n} {} is the number of moles. If we solve this equation for n / V size 12{n/V} {} to calculate the number of moles per cubic meter, we can then convert this quantity to grams per cubic meter as requested. To do this, we need to use the molecular mass of water, which is given in the periodic table.

Solution

1. Identify the knowns and convert them to the proper units:

  1. temperature T = 20 º C=293 K size 12{T="20"°"C=293 K"} {}
  2. vapor pressure P size 12{P} {} of water at 20 º C size 12{"20"°C} {} is 2 . 33 × 10 3 Pa size 12{2 "." "33" times "10" rSup { size 8{3} } " Pa"} {}
  3. molecular mass of water is 18 . 0 g/mol size 12{"18" "." 0" g/mol"} {}

2. Solve the ideal gas law for n / V size 12{n/V} {} .

n V = P RT size 12{ { { size 11{n}} over { size 11{V}} } = { { size 11{P}} over { size 11{ ital "RT"}} } } {}

3. Substitute known values into the equation and solve for n / V size 12{n/V} {} .

n V = P RT = 2 . 33 × 10 3 Pa 8 . 31 J/mol K 293 K = 0 . 957 mol/m 3 size 12{ { { size 11{n}} over { size 11{V}} } = { { size 11{P}} over { size 11{ ital "RT"}} } = { { size 11{2 "." "33" times "10" rSup { size 8{3} } `"Pa"}} over { size 12{ left (8 "." "31"`"J/mol" cdot K right ) left ("293"`K right )} } } =0 "." "957"`"mol/m" rSup { size 8{3} } } {}

4. Convert the density in moles per cubic meter to grams per cubic meter.

ρ = 0 . 957 mol m 3 18 . 0 g mol = 17 . 2 g/m 3 size 12{ size 11{ρ= left ( size 11{0 "." "957" { { size 11{"mol"}} over { size 11{m rSup { size 8{3} } }} } } right ) left ( size 12{ { {"18" "." "0 g"} over { size 12{"mol"} } } } right )="17" "." 2" g/m" rSup { size 8{3} } }} {}

Discussion

The density is obtained by assuming a pressure equal to the vapor pressure of water at 20 . 0 º C size 12{"20" "." 0°C} {} . The density found is identical to the value in [link] , which means that a vapor density of 17 . 2 g/m 3 size 12{"17" "." 2" g/m" rSup { size 8{3} } } {} at 20 . 0 º C size 12{"20" "." 0°C} {} creates a partial pressure of 2 . 33 × 10 3 Pa, size 12{2 "." "33"´"10" rSup { size 8{3} } " Pa,"} {} equal to the vapor pressure of water at that temperature. If the partial pressure is equal to the vapor pressure, then the liquid and vapor phases are in equilibrium, and the relative humidity is 100%. Thus, there can be no more than 17.2 g of water vapor per m 3 size 12{m rSup { size 8{3} } } {} at 20 . 0 º C size 12{"20" "." 0°C} {} , so that this value is the saturation vapor density at that temperature. This example illustrates how water vapor behaves like an ideal gas: the pressure and density are consistent with the ideal gas law (assuming the density in the table is correct). The saturation vapor densities listed in [link] are the maximum amounts of water vapor that air can hold at various temperatures.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask