<< Chapter < Page Chapter >> Page >

Components along the same axis, say the x -axis, are vectors along the same line and, thus, can be added to one another like ordinary numbers. The same is true for components along the y -axis. (For example, a 9-block eastward walk could be taken in two legs, the first 3 blocks east and the second 6 blocks east, for a total of 9, because they are along the same direction.) So resolving vectors into components along common axes makes it easier to add them. Now that the components of R size 12{R} {} are known, its magnitude and direction can be found.

Step 3. To get the magnitude R size 12{R } {} of the resultant, use the Pythagorean theorem:

R = R x 2 + R y 2 . size 12{R= sqrt {R rSub { size 8{x} } rSup { size 8{2} } +R rSub { size 8{y} } rSup { size 8{2} } } "."} {}

Step 4. To get the direction of the resultant:

θ = tan 1 ( R y / R x ) . size 12{θ="tan" rSup { size 8{ - 1} } \( R rSub { size 8{y} } /R rSub { size 8{x} } \) "."} {}

The following example illustrates this technique for adding vectors using perpendicular components.

Adding vectors using analytical methods

Add the vector A size 12{A} {} to the vector B size 12{B} {} shown in [link] , using perpendicular components along the x - and y -axes. The x - and y -axes are along the east–west and north–south directions, respectively. Vector A size 12{A} {} represents the first leg of a walk in which a person walks 53 . 0 m size 12{"53" "." "0 m"} {} in a direction 20 . 0 º size 12{"20" "." 0º } {} north of east. Vector B size 12{B} {} represents the second leg, a displacement of 34 . 0 m size 12{"34" "." "0 m"} {} in a direction 63 . 0 º size 12{"63" "." 0º } {} north of east.

Two vectors A and B are shown. The tail of the vector A is at origin. Both the vectors are in the first quadrant. Vector A is of magnitude fifty three units and is inclined at an angle of twenty degrees to the horizontal. From the head of the vector A another vector B of magnitude 34 units is drawn and is inclined at angle sixty three degrees with the horizontal. The resultant of two vectors is drawn from the tail of the vector A to the head of the vector B.
Vector A size 12{A} {} has magnitude 53 . 0 m size 12{"53" "." "0 m"} {} and direction 20 . 0 º size 12{"20" "." 0 { size 12{ circ } } } {} north of the x -axis. Vector B size 12{B} {} has magnitude 34 . 0 m size 12{"34" "." "0 m"} {} and direction 63 . 0 º size 12{"63" "." 0° } {} north of the x -axis. You can use analytical methods to determine the magnitude and direction of R size 12{R} {} .

Strategy

The components of A size 12{A} {} and B size 12{B} {} along the x - and y -axes represent walking due east and due north to get to the same ending point. Once found, they are combined to produce the resultant.

Solution

Following the method outlined above, we first find the components of A size 12{A} {} and B size 12{B} {} along the x - and y -axes. Note that A = 53.0 m size 12{"A" "=" "53.0 m"} {} , θ A = 20.0º size 12{"θ" "subA" "=" "20.0°" } {} , B = 34.0 m size 12{"B" "=" "34.0" "m"} {} , and θ B = 63.0º size 12{θ rSub { size 8{B} } } {} . We find the x -components by using A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {} , which gives

A x = A cos θ A = ( 53. 0 m ) ( cos 20.0º ) = ( 53. 0 m ) ( 0 .940 ) = 49. 8 m alignl { stack { size 12{A rSub { size 8{x} } =A"cos"θ rSub { size 8{A} } = \( "53" "." 0" m" \) \( "cos""20" "." 0 { size 12{ circ } } \) } {} #" "= \( "53" "." 0" m" \) \( 0 "." "940" \) ="49" "." 8" m" {} } } {}

and

B x = B cos θ B = ( 34 . 0 m ) ( cos 63.0º ) = ( 34 . 0 m ) ( 0 . 454 ) = 15 . 4 m . alignl { stack { size 12{B rSub { size 8{x} } =B"cos"θ rSub { size 8{B} } = \( "34" "." 0" m" \) \( "cos""63" "." 0 { size 12{ circ } } \) } {} #" "= \( "34" "." 0" m" \) \( 0 "." "454" \) ="15" "." 4" m" {} } } {}

Similarly, the y -components are found using A y = A sin θ A size 12{A rSub { size 8{y} } =A"sin"θ rSub { size 8{A} } } {} :

A y = A sin θ A = ( 53 . 0 m ) ( sin 20.0º ) = ( 53 . 0 m ) ( 0 . 342 ) = 18 . 1 m alignl { stack { size 12{A rSub { size 8{y} } =A"sin"θ rSub { size 8{A} } = \( "53" "." 0" m" \) \( "sin""20" "." 0 { size 12{ circ } } \) } {} #" "= \( "53" "." 0" m" \) \( 0 "." "342" \) ="18" "." 1" m" {} } } {}

and

B y = B sin θ B = ( 34 . 0 m ) ( sin 63 . 0 º ) = ( 34 . 0 m ) ( 0 . 891 ) = 30 . 3 m . alignl { stack { size 12{B rSub { size 8{y} } =B"sin"θ rSub { size 8{B} } = \( "34" "." 0" m" \) \( "sin""63" "." 0 { size 12{ circ } } \) } {} #" "= \( "34" "." 0" m" \) \( 0 "." "891" \) ="30" "." 3" m" "." {} } } {}

The x - and y -components of the resultant are thus

R x = A x + B x = 49 . 8 m + 15 . 4 m = 65 . 2 m size 12{R rSub { size 8{x} } =A rSub { size 8{x} } +B rSub { size 8{x} } ="49" "." 8" m"+"15" "." 4" m"="65" "." 2" m"} {}

and

R y = A y + B y = 18 . 1 m + 30 . 3 m = 48 . 4 m . size 12{R rSub { size 8{y} } =A rSub { size 8{y} } +B rSub { size 8{y} } ="18" "." 1" m"+"30" "." 3" m"="48" "." 4" m."} {}

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

R = R x 2 + R y 2 = ( 65 . 2 ) 2 + ( 48 . 4 ) 2 m size 12{R= sqrt {R rSub { size 8{x} } rSup { size 8{2} } +R rSub { size 8{y} } rSup { size 8{2} } } = sqrt { \( "65" "." 2 \) rSup { size 8{2} } + \( "48" "." 4 \) rSup { size 8{2} } } " m"} {}

so that

R = 81.2 m. size 12{R ="81.2" "m."} {}

Finally, we find the direction of the resultant:

θ = tan 1 ( R y / R x ) =+ tan 1 ( 48 . 4 / 65 . 2 ) . size 12{θ="tan" rSup { size 8{ - 1} } \( R rSub { size 8{y} } /R rSub { size 8{x} } \) "=+""tan" rSup { size 8{ - 1} } \( "48" "." 4/"65" "." 2 \) "."} {}

Thus,

θ = tan 1 ( 0 . 742 ) = 36 . 6 º . size 12{θ="tan" rSup { size 8{ - 1} } \( 0 "." "742" \) ="36" "." 6 { size 12{ circ } } "."} {}
The addition of two vectors A and B is shown. Vector A is of magnitude fifty three units and is inclined at an angle of twenty degrees to the horizontal. Vector B is of magnitude thirty four units and is inclined at angle sixty three degrees to the horizontal. The components of vector A are shown as dotted vectors A X is equal to forty nine point eight meter along x axis and A Y is equal to eighteen point one meter along Y axis. The components of vector B are also shown as dotted vectors B X is equal to fifteen point four meter and B Y is equal to thirty point three meter. The horizontal component of the resultant R X is equal to A X plus B X is equal to sixty five point two meter. The vertical component of the resultant R Y is equal to A Y plus B Y is equal to forty eight point four meter. The magnitude of the resultant of two vectors is eighty one point two meters. The direction of the resultant R is in thirty six point six degree from the vector A in anticlockwise direction.
Using analytical methods, we see that the magnitude of R size 12{R} {} is 81 . 2 m size 12{"81" "." "2 m"} {} and its direction is 36 . size 12{"36" "." 6°} {} north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, A B A + ( –B ) size 12{A – B equiv A+ \( - B \) } {} . Thus, the method for the subtraction of vectors using perpendicular components is identical to that for addition . The components of –B are the negatives of the components of B size 12{B} {} . The x - and y -components of the resultant A B = R size 12{A- bold "B = R"} {} are thus

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask