<< Chapter < Page Chapter >> Page >

Units of force

F net = m a size 12{F rSub { size 8{"net"} } =ma} {} is used to define the units of force in terms of the three basic units for mass, length, and time. The SI unit of force is called the newton (abbreviated N) and is the force needed to accelerate a 1-kg system at the rate of 1 m/s 2 size 12{1" m/s" rSup { size 8{2} } } {} . That is, since F net = m a size 12{F rSub { size 8{"net"} } =ma} {} ,

1 N = 1 kg m/s 2 size 12{"1 N "=" 1 kg" cdot "m/s^2"} {} .

While almost the entire world uses the newton for the unit of force, in the United States the most familiar unit of force is the pound (lb), where 1 N = 0.225 lb.

Weight and the gravitational force

When an object is dropped, it accelerates toward the center of Earth. Newton’s second law states that a net force on an object is responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly called its weight     w size 12{w} {} . Weight can be denoted as a vector w size 12{w} {} because it has a direction; down is, by definition, the direction of gravity, and hence weight is a downward force. The magnitude of weight is denoted as w size 12{w} {} . Galileo was instrumental in showing that, in the absence of air resistance, all objects fall with the same acceleration g size 12{g} {} . Using Galileo’s result and Newton’s second law, we can derive an equation for weight.

Consider an object with mass m size 12{m} {} falling downward toward Earth. It experiences only the downward force of gravity, which has magnitude w size 12{w} {} . Newton’s second law states that the magnitude of the net external force on an object is F net = ma size 12{F rSub { size 8{"net"} } = ital "ma"} {} .

Since the object experiences only the downward force of gravity, F net = w size 12{F rSub { size 8{"net"} } =w} {} . We know that the acceleration of an object due to gravity is g , or a = g size 12{a=g} {} . Substituting these into Newton’s second law gives

Weight

This is the equation for weight —the gravitational force on a mass m size 12{m} {} :

w = mg size 12{w= ital "mg"} {} .

Since g = 9.80 m/s 2 size 12{g=9 "." "80"" m/s" rSup { size 8{2} } } {} on Earth, the weight of a 1.0 kg object on Earth is 9.8 N, as we see:

w = mg = ( 1 . 0 kg ) ( 9.80 m/s 2 ) = 9.8 N size 12{w= ital "mg"= \( 1 "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) =9 "." 8" N"} {} .

Recall that g size 12{g} {} can take a positive or negative value, depending on the positive direction in the coordinate system. Be sure to take this into consideration when solving problems with weight.

When the net external force on an object is its weight, we say that it is in free-fall    . That is, the only force acting on the object is the force of gravity. In the real world, when objects fall downward toward Earth, they are never truly in free-fall because there is always some upward force from the air acting on the object.

The acceleration due to gravity g size 12{g} {} varies slightly over the surface of Earth, so that the weight of an object depends on location and is not an intrinsic property of the object. Weight varies dramatically if one leaves Earth’s surface. On the Moon, for example, the acceleration due to gravity is only 1.67 m/s 2 size 12{1 "." "67"" m/s" rSup { size 8{2} } } {} . A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large body , such as Earth, the Moon, the Sun, and so on. This is the most common and useful definition of weight in physics. It differs dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and exploration. When they speak of “weightlessness” and “microgravity,” they are really referring to the phenomenon we call “free-fall” in physics. We shall use the above definition of weight, and we will make careful distinctions between free-fall and actual weightlessness.

Questions & Answers

Why is the sky blue...?
Star Reply
It's filtered light from the 2 forms of radiation emitted from the sun. It's mainly filtered UV rays. There's a theory titled Scatter Theory that covers this topic
Mike
A heating coil of resistance 30π is connected to a 240v supply for 5min to boil a quantity of water in a vessel of heat capacity 200jk. If the initial temperature of water is 20°c and it specific heat capacity is 4200jkgk calculate the mass of water in a vessel
fasawe Reply
A thin equi convex lens is placed on a horizontal plane mirror and a pin held 20 cm vertically above the lens concise in position with its own image the space between the undersurface of d lens and the mirror is filled with water (refractive index =1•33)and then to concise with d image d pin has to
Azummiri Reply
Be raised until its distance from d lens is 27cm find d radius of curvature
Azummiri
what happens when a nuclear bomb and atom bomb bomb explode add the same time near each other
FlAsH Reply
A monkey throws a coconut straight upwards from a coconut tree with a velocity of 10 ms-1. The coconut tree is 30 m high. Calculate the maximum height of the coconut from the top of the coconut tree? Can someone answer my question
Fatinizzah Reply
v2 =u2 - 2gh 02 =10x10 - 2x9.8xh h = 100 ÷ 19.6 answer = 30 - h.
Ramonyai
why is the north side is always referring to n side of magnetic
sam Reply
who is a nurse
Chilekwa Reply
A nurse is a person who takes care of the sick
Bukola
a nurse is also like an assistant to the doctor
Gadjawa
explain me wheatstone bridge
Malik Reply
good app
samuel
Wheatstone bridge is an instrument used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component.
MUHD
Rockwell Software is Rockwell Automation’s "Retro Encabulator". Now, basically the only new principle involved is that instead of power being generated by the relative motion of conductors and fluxes, it’s produced by the modial interaction of magneto-reluctance and capacitive diractance. The origin
Chip
what refractive index
Adjah Reply
write a comprehensive note on primary colours
Harrison Reply
relationship between refractive index, angle of minimum deviation and angle of prism
Harrison
Who knows the formula for binding energy,and what each variable or notation stands for?
Agina Reply
1. A black thermocouple measures the temperature in the chamber with black walls.if the air around the thermocouple is 200 C,the walls are at 1000 C,and the heat transfer constant is 15.compute the temperature gradient
Tikiso Reply
what is the relationship between G and g
Olaiya Reply
G is the u. constant, as g stands for grav, accelerate at a discreet point
Mark
Is that all about it?
Olaiya
pls explain in details
Olaiya
G is a universal constant
Mark
g stands for the gravitational acceleration point. hope this helps you.
Mark
balloon TD is at a gravitational acceleration at a specific point
Mark
I'm sorry this doesn't take dictation very well.
Mark
Can anyone explain the Hooke's law of elasticity?
Olaiya Reply
extension of a spring is proportional to the force applied so long as the force applied does not exceed the springs capacity according to my textbook
Amber
does this help?
Amber
Yes, thanks
Olaiya
so any solid can be compressed how compressed is dependent upon how much force is applied F=deltaL
Amber
sorry, the equation is F=KdeltaL delta is the triangle symbol and L is length so the change in length is proportional to amount of Force applied I believe that is what Hookes law means. anyone catch any mistakes here please correct me :)
Amber
I think it is used only for solids and not liquids, isn't it?
Olaiya
basically as long as you dont exceed the elastic limit the object should return to it original form but if you exceed this limit the object will not return to original shape as it will break
Amber
Thanks for the explanation
Olaiya
yh, liquids don't apply here, that should be viscosity
Chiamaka
hope it helps 😅
Amber
also, an object doesnt have to break necessarily, but it will have a new form :)
Amber
Yes
Olaiya
yeah, I think it is for solids but maybe there is a variation for liquids? that I am not sure of
Amber
ok
Olaiya
good luck!
Amber
Same
Olaiya
aplease i need a help on spcific latent heat of vibrations
Bilgate
specific latent heat of vaporisation
Bilgate
how many kilometers makes a mile
Margaret Reply
about 1.6 kilometres.
Faizyab
near about 1.67 kilometers
Aakash
equal to 1.609344 kilometers.
MUHD
Practice Key Terms 7

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask