<< Chapter < Page Chapter >> Page >
Metric prefixes for powers of 10 and their symbols
Prefix Symbol Value See Appendix A for a discussion of powers of 10. Example (some are approximate)
exa E 10 18 size 12{"10" rSup { size 8{"18"} } } {} exameter Em 10 18  m size 12{"10" rSup { size 8{"18"} } " m"} {} distance light travels in a century
peta P 10 15 size 12{"10" rSup { size 8{"15"} } } {} petasecond Ps 10 15  s size 12{"10" rSup { size 8{"15"} } " s"} {} 30 million years
tera T 10 12 size 12{"10" rSup { size 8{"12"} } } {} terawatt TW 10 12  W size 12{"10" rSup { size 8{"12"} } `W} {} powerful laser output
giga G 10 9 size 12{"10" rSup { size 8{9} } } {} gigahertz GHz 10 9  Hz size 12{"10" rSup { size 8{9} } `"Hz"} {} a microwave frequency
mega M 10 6 size 12{"10" rSup { size 8{6} } } {} megacurie MCi 10 6  Ci size 12{"10" rSup { size 8{6} } `"Ci"} {} high radioactivity
kilo k 10 3 size 12{"10" rSup { size 8{3} } } {} kilometer km 10 3  m size 12{"10" rSup { size 8{3} } " m"} {} about 6/10 mile
hecto h 10 2 size 12{"10" rSup { size 8{2} } } {} hectoliter hL 10 2  L size 12{"10" rSup { size 8{2} } " L"} {} 26 gallons
deka da 10 1 size 12{"10" rSup { size 8{1} } } {} dekagram dag 10 1  g size 12{"10" rSup { size 8{1} } `g} {} teaspoon of butter
10 0 size 12{"10" rSup { size 8{0} } } {} (=1)
deci d 10 1 size 12{"10" rSup { size 8{ - 1} } } {} deciliter dL 10 1  L size 12{"10" rSup { size 8{ - 1} } `L} {} less than half a soda
centi c 10 2 size 12{"10" rSup { size 8{ - 2} } } {} centimeter cm 10 2  m size 12{"10" rSup { size 8{ - 2} } `m} {} fingertip thickness
milli m 10 3 size 12{"10" rSup { size 8{ - 3} } } {} millimeter mm 10 3  m size 12{"10" rSup { size 8{ - 3} } `m} {} flea at its shoulders
micro µ 10 6 size 12{"10" rSup { size 8{ - 6} } } {} micrometer µm 10 6  m size 12{"10" rSup { size 8{ - 6} } `m} {} detail in microscope
nano n 10 9 size 12{"10" rSup { size 8{ - 9} } } {} nanogram ng 10 9  g size 12{"10" rSup { size 8{ - 9} } `g} {} small speck of dust
pico p 10 12 size 12{"10" rSup { size 8{ - "12"} } } {} picofarad pF 10 12  F size 12{"10" rSup { size 8{ - "12"} } F} {} small capacitor in radio
femto f 10 15 size 12{"10" rSup { size 8{ - "15"} } } {} femtometer fm 10 15  m size 12{"10" rSup { size 8{ - "15"} } `m} {} size of a proton
atto a 10 18 size 12{"10" rSup { size 8{ - "18"} } } {} attosecond as 10 18  s size 12{"10" rSup { size 8{ - "18"} } `s} {} time light crosses an atom

Known ranges of length, mass, and time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known lengths, masses, and times in [link] . Examination of this table will give you some feeling for the range of possible topics and numerical values. (See [link] and [link] .)

A magnified image of tiny phytoplankton swimming among the crystal of ice.[
Tiny phytoplankton swims among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2 millimeters in length. (credit: Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)
A view of Abell Galaxy with some bright stars and some hot gases.
Galaxies collide 2.4 billion light years away from Earth. The tremendous range of observable phenomena in nature challenges the imagination. (credit: NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing: CFHT/UVic./H. Hoekstra et al.)

Unit conversion and dimensional analysis

It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook, some quantities may be expressed in units of liters and you need to convert them to cups. Or, perhaps you are reading walking directions from one location to another and you are interested in how many miles you will be walking. In this case, you will need to convert units of feet to miles.

Let us consider a simple example of how to convert units. Let us say that we want to convert 80 meters (m) to kilometers (km).

The first thing to do is to list the units that you have and the units that you want to convert to. In this case, we have units in meters and we want to convert to kilometers .

Next, we need to determine a conversion factor    relating meters to kilometers. A conversion factor is a ratio expressing how many of one unit are equal to another unit. For example, there are 12 inches in 1 foot, 100 centimeters in 1 meter, 60 seconds in 1 minute, and so on. In this case, we know that there are 1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor so that the units cancel out, as shown:

80 m × 1 km 1000 m = 0 .080 km. size 12{"80"" m" times { {"1 km"} over {"1000 m"} } =0 "." "080"`"km"} {}

Note that the unwanted m unit cancels, leaving only the desired km unit. You can use this method to convert between any types of unit.

Questions & Answers

What does mean ohms law imply
Victoria Reply
what is matter
folajin Reply
Anything that occupies space
Any thing that has weight and occupies space
Anything which we can feel by any of our 5 sense organs
what is a sulphate
any answers
the time rate of increase in velocity is called
Blessing Reply
What is uniform velocity
Greetings,users of that wonderful app.
Frank Reply
how to solve pressure?
Cruz Reply
how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)
can someone derive the formula a little bit deeper?
what is coplanar force?
what is accuracy and precision
Peace Reply
How does a current follow?
Vineeta Reply
which one dc or ac current.
how does a current following?
AC current
AC current follows due to changing electric field and magnetic field.
you guys are just saying follow is flow not follow please
ok bro thanks
but i wanted to understand him/her in his own language
but I think the statement is written in English not any other language
my mean that in which form he/she written this,will understand better in this form, i write.
ok thanks bro. my mistake
u are welcome
what is a semiconductor
Vineeta Reply
substances having lower forbidden gap between valence band and conduction band
what is a conductor?
replace lower by higher only
convert 56°c to kelvin
How does a current follow?
A semiconductor is any material whose conduction lies between that of a conductor and an insulator.
what is Atom? what is molecules? what is ions?
Abubakar Reply
What is a molecule
Samuel Reply
Is a unit of a compound that has two or more atoms either of the same or different atoms
A molecule is the smallest indivisible unit of a compound, Just like the atom is the smallest indivisible unit of an element.
what is a molecule?
what is a vector
smith Reply
A quantity that has both a magnitude AND a direction. E.g velocity, acceleration, force are all vector quantities. Hope this helps :)
what is the difference between velocity and relative velocity?
Velocity is the rate of change of displacement with time. Relative velocity on the other hand is the velocity observed by an observer with respect to a reference point.
what do u understand by Ultraviolet catastrophe?
A certain freely falling object, released from rest, requires 1.5seconds to travel the last 30metres before it hits the ground. (a) Find the velocity of the object when it is 30metres above the ground.
A vector is a quantity that has both magnitude and direction
the velocity Is 20m/s-2
derivation of electric potential
Rugunda Reply
V = Er = (kq/r^2)×r V = kq/r Where V: electric potential.
what is the difference between simple motion and simple harmonic motion ?
simple harmonic motion is a motion of tro and fro of simple pendulum and the likes while simple motion is a linear motion on a straight line.
a body acceleration uniform from rest a 6m/s -2 for 8sec and decelerate uniformly to rest in the next 5sec,the magnitude of the deceleration is ?
Patricia Reply
The wording not very clear kindly
the magnitude of deceleration =-9.8ms-2. first find the final velocity using the known acceleration and time. next use the calculated velocity to find the size of deceleration.
Firstly, calculate final velocity of the body and then the deceleration. The final ans is,-9.6ms-2
8x6= 48m/-2 use v=u + at 48÷5=9.6
can i define motion like this motion can be define as the continuous change of an object or position
Shuaib Reply
Any object in motion will come to rest after a time duration. Different objects may cover equal distance in different time duration. Therefore, motion is defined as a change in position depending on time.

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?