<< Chapter < Page Chapter >> Page >

Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton's third law, if Earth exerts a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see [link] ). We do not sense the Moon's effect on Earth's motion, because the Moon's gravity moves our bodies right along with Earth but there are other signs on Earth that clearly show the effect of the Moon's gravitational force as discussed in Satellites and Kepler's Laws: An Argument for Simplicity .

Figure a shows the Earth and the Moon around it orbiting in a circular path shown here as a circle around the Earth with an arrow over it showing the counterclockwise direction of the Moon. The center of mass of the circle is shown here with a point on the Earth that is not the Earth's center but just right to its center. Figure b shows the Sun and the counterclockwise rotation of the Earth around it, in an elliptical path, which has wiggles. Along this path the center of mass of the Earth-Moon is also shown; it follows non-wiggled elliptical path.
(a) Earth and the Moon rotate approximately once a month around their common center of mass. (b) Their center of mass orbits the Sun in an elliptical orbit, but Earth's path around the Sun has “wiggles” in it. Similar wiggles in the paths of stars have been observed and are considered direct evidence of planets orbiting those stars. This is important because the planets' reflected light is often too dim to be observed.

Tides

Ocean tides are one very observable result of the Moon's gravity acting on Earth. [link] is a simplified drawing of the Moon's position relative to the tides. Because water easily flows on Earth's surface, a high tide is created on the side of Earth nearest to the Moon, where the Moon's gravitational pull is strongest. Why is there also a high tide on the opposite side of Earth? The answer is that Earth is pulled toward the Moon more than the water on the far side, because Earth is closer to the Moon. So the water on the side of Earth closest to the Moon is pulled away from Earth, and Earth is pulled away from water on the far side. As Earth rotates, the tidal bulge (an effect of the tidal forces between an orbiting natural satellite and the primary planet that it orbits) keeps its orientation with the Moon. Thus there are two tides per day (the actual tidal period is about 12 hours and 25.2 minutes), because the Moon moves in its orbit each day as well).

The given figure shows an ellipse, inside which there is a circular image of the Earth. There is a curved arrow in the lower part of the Earth's image pointing in the counterclockwise direction. The right and left side of the ellipse are labeled as High tide and the top and bottom side are labeled as Low tide. Alongside this image a circular image of the Moon is also given with dots showing the crates over it. A vertically upwards vector from its top is also shown, which indicates the direction of the Moon's velocity.
The Moon causes ocean tides by attracting the water on the near side more than Earth, and by attracting Earth more than the water on the far side. The distances and sizes are not to scale. For this simplified representation of the Earth-Moon system, there are two high and two low tides per day at any location, because Earth rotates under the tidal bulge.

The Sun also affects tides, although it has about half the effect of the Moon. However, the largest tides, called spring tides, occur when Earth, the Moon, and the Sun are aligned. The smallest tides, called neap tides, occur when the Sun is at a 90º size 12{"90" rSup { size 8{ circ } } } {} angle to the Earth-Moon alignment.

Figure a shows an ellipse, inside which there is a circular image of the Earth. There is a curved arrow in the lower part of the Earth's image pointing in the counterclockwise direction. Alongside this image a circular image of the Moon is also given with dots showing the crates over it. A vertically upward vector from its top is also drawn, which shows the direction of velocity. To the right side of the image, an image of the Sun is also shown, in a circular shape with pointed wiggles throughout its boundary. Figure b shows an ellipse, inside which there is a circular image of the Earth. There is a curved arrow in the lower part of the Earth's image pointing in the counterclockwise direction. Alongside this image a circular image of the Moon is also given with dots showing the crates over it. A vertical downward vector from its bottom is also drawn, which shows the direction of velocity. To the right side of the image, an image of the Sun is also shown, in a circular shape and pointed wiggles throughout its boundary. Figure c shows an ellipse, inside which there is a circular image of the Earth. There is a curved arrow in the lower part of the Earth's image pointing in the counterclockwise direction. Alongside this image a circular image of the Moon is also given with dots showing the crates over it. A horizontal rightward vector from its right side is also drawn, which shows the direction of velocity. To the right side of the image, an image of the Sun is also shown, in a circular shape and pointed wiggles throughout its boundary.
(a, b) Spring tides: The highest tides occur when Earth, the Moon, and the Sun are aligned. (c) Neap tide: The lowest tides occur when the Sun lies at 90º size 12{"90" rSup { size 8{ circ } } } {} to the Earth-Moon alignment. Note that this figure is not drawn to scale.

Tides are not unique to Earth but occur in many astronomical systems. The most extreme tides occur where the gravitational force is the strongest and varies most rapidly, such as near black holes (see [link] ). A few likely candidates for black holes have been observed in our galaxy. These have masses greater than the Sun but have diameters only a few kilometers across. The tidal forces near them are so great that they can actually tear matter from a companion star.

Questions & Answers

A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
Kavita Reply
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
Anurag Reply
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag
What was the previous far point of a patient who had laser correction that reduced the power of her eye by 7.00 D, producing a normal distant vision power of 50.0 D for her?
Jaydie Reply
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Jaydie
29/20 ? maybes
Ju
In what ways does physics affect the society both positively or negatively
Princewill Reply
how can I read physics...am finding it difficult to understand...pls help
rerry Reply
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
I have a exam on 12 february
David Reply
what is velocity
Jiti
the speed of something in a given direction.
Ju
what is a magnitude in physics
Jiti Reply
Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.
Giovani Reply
What is meant by dielectric charge?
It's Reply
what happens to the size of charge if the dielectric is changed?
Brhanu Reply
omega= omega not +alpha t derivation
Provakar Reply
u have to derivate it respected to time ...and as w is the angular velocity uu will relace it with "thita × time""
Abrar
do to be peaceful with any body
Brhanu Reply
the angle subtended at the center of sphere of radius r in steradian is equal to 4 pi how?
Saeed Reply
if for diatonic gas Cv =5R/2 then gamma is equal to 7/5 how?
Saeed
define variable velocity
Ali Reply
displacement in easy way.
Mubashir Reply
Practice Key Terms 4

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask