<< Chapter < Page Chapter >> Page >

Problem-solving strategies for the methods of heat transfer

  1. Examine the situation to determine what type of heat transfer is involved.
  2. Identify the type(s) of heat transfer—conduction, convection, or radiation.
  3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is very useful.
  4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
  5. Solve the appropriate equation for the quantity to be determined (the unknown).
  6. For conduction, equation Q t = kA ( T 2 T 1 ) d size 12{ { {Q} over {t} } = { { ital "kA" \( T rSub { size 8{2} } - T rSub { size 8{1} } \) } over {d} } } {} is appropriate. [link] lists thermal conductivities. For convection, determine the amount of matter moved and use equation Q = mc Δ T size 12{Q= ital "mc"ΔT} {} , to calculate the heat transfer involved in the temperature change of the fluid. If a phase change accompanies convection, equation Q = mL f size 12{Q= ital "mL" rSub { size 8{f} } } {} or Q = mL v is appropriate to find the heat transfer involved in the phase change. [link] lists information relevant to phase change. For radiation, equation Q net t = σ e A T 2 4 T 1 4 size 12{ { {Q rSub { size 8{"net"} } } over {t} } =σ`e`A` left (T rSub { size 8{2} } rSup { size 8{4} } - T rSub { size 8{1} } rSup { size 8{4} } right )} {} gives the net heat transfer rate.
  7. Insert the knowns along with their units into the appropriate equation and obtain numerical solutions complete with units.
  8. Check the answer to see if it is reasonable. Does it make sense?

Summary

  • Radiation is the rate of heat transfer through the emission or absorption of electromagnetic waves.
  • The rate of heat transfer depends on the surface area and the fourth power of the absolute temperature:
    Q t = σ e A T 4 , size 12{ { {Q} over {t} } =σ`e`A`T rSup { size 8{4} } } {}

    where σ = 5 .67 × 10 8 J/s m 2 K 4 is the Stefan-Boltzmann constant and e size 12{e} {} is the emissivity of the body. For a black body, e = 1 whereas a shiny white or perfect reflector has e = 0 , with real objects having values of e between 1 and 0. The net rate of heat transfer by radiation is

    Q net t = σ e A T 2 4 T 1 4 size 12{ { {Q rSub { size 8{"net"} } } over {t} } =σ`e`A` left (T rSub { size 8{2} } rSup { size 8{4} } - T rSub { size 8{1} } rSup { size 8{4} } right )} {}

    where T 1 size 12{T rSub { size 8{1} } } {} is the temperature of an object surrounded by an environment with uniform temperature T 2 size 12{T rSub { size 8{2} } } {} and e size 12{e} {} is the emissivity of the object .

Conceptual questions

When watching a daytime circus in a large, dark-colored tent, you sense significant heat transfer from the tent. Explain why this occurs.

Got questions? Get instant answers now!

Satellites designed to observe the radiation from cold (3 K) dark space have sensors that are shaded from the Sun, Earth, and Moon and that are cooled to very low temperatures. Why must the sensors be at low temperature?

Got questions? Get instant answers now!

Why are cloudy nights generally warmer than clear ones?

Got questions? Get instant answers now!

Why are thermometers that are used in weather stations shielded from the sunshine? What does a thermometer measure if it is shielded from the sunshine and also if it is not?

Got questions? Get instant answers now!

On average, would Earth be warmer or cooler without the atmosphere? Explain your answer.

Got questions? Get instant answers now!

Problems&Exercises

At what net rate does heat radiate from a 275 -m 2 size 12{"275""-m" rSup { size 8{2} } } {} black roof on a night when the roof’s temperature is 30. C and the surrounding temperature is 15. C size 12{"15" "." 0°C} {} ? The emissivity of the roof is 0.900.

21 . 7  kW size 12{ - "21" "." 7`W} {}
Note that the negative answer implies heat loss to the surroundings.

Got questions? Get instant answers now!

(a) Cherry-red embers in a fireplace are at 850º C and have an exposed area of 0 . 200  m 2 and an emissivity of 0.980. The surrounding room has a temperature of 18 . C . If 50% of the radiant energy enters the room, what is the net rate of radiant heat transfer in kilowatts? (b) Does your answer support the contention that most of the heat transfer into a room by a fireplace comes from infrared radiation?

Got questions? Get instant answers now!

Questions & Answers

write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
Gabriel Reply
how does a model differ from a theory
Friday Reply
what is vector quantity
Ridwan Reply
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
Jack Reply
what's electromagnetic induction
Chinaza Reply
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
Ajayi Reply
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
Gabriel Reply
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
Gabriel Reply
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
Ademiye
yes it was an assignment question "^"represent raise to power pls
Gabriel
mu/y³ u>v²k² uk²/√u-vk please help me out
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
Imtiaz Reply
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Ademiye
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
Isaac Reply
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
Mildred Reply
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
Ademiye
method of polarization
Ajayi
What is atomic number?
Makperr Reply
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
Yinka Reply
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
Taheer Reply
why the satellite does not drop to the earth explain
Emmanuel Reply
what is a matter
Yinka
what is matter
Yinka
what is matter
Yinka
what is a matter
Yinka
I want the nuclear physics conversation
Mohamed
because space is a vacuum and anything outside the earth 🌎 can not come back without an act of force applied to it to leave the vacuum and fall down to the earth with a maximum force length of 30kcm per second
Clara
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask