# 23.12 Rlc series ac circuits  (Page 5/9)

 Page 5 / 9

A pure LC circuit with negligible resistance oscillates at ${f}_{0}$ , the same resonant frequency as an RLC circuit. It can serve as a frequency standard or clock circuit—for example, in a digital wristwatch. With a very small resistance, only a very small energy input is necessary to maintain the oscillations. The circuit is analogous to a car with no shock absorbers. Once it starts oscillating, it continues at its natural frequency for some time. [link] shows the analogy between an LC circuit and a mass on a spring. An LC circuit is analogous to a mass oscillating on a spring with no friction and no driving force. Energy moves back and forth between the inductor and capacitor, just as it moves from kinetic to potential in the mass-spring system.

## Phet explorations: circuit construction kit (ac+dc), virtual lab

Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, and inspect them using lab instruments such as voltmeters and ammeters. Circuit Construction Kit (AC+DC), Virtual Lab

## Section summary

• The AC analogy to resistance is impedance $Z$ , the combined effect of resistors, inductors, and capacitors, defined by the AC version of Ohm’s law:
${I}_{0}=\frac{{V}_{0}}{Z}\phantom{\rule{0.25em}{0ex}}\text{or}\phantom{\rule{0.25em}{0ex}}{I}_{\text{rms}}=\frac{{V}_{\text{rms}}}{Z},$
where ${I}_{0}$ is the peak current and ${V}_{0}$ is the peak source voltage.
• Impedance has units of ohms and is given by $Z=\sqrt{{R}^{2}+\left({X}_{L}-{X}_{C}{\right)}^{2}}$ .
• The resonant frequency ${f}_{0}$ , at which ${X}_{L}={X}_{C}$ , is
${f}_{0}=\frac{1}{2\pi \sqrt{\text{LC}}}\text{.}$
• In an AC circuit, there is a phase angle $\varphi$ between source voltage $V$ and the current $I$ , which can be found from
$\text{cos}\phantom{\rule{0.25em}{0ex}}\varphi =\frac{R}{Z}\text{,}$
• $\varphi =0º$ for a purely resistive circuit or an RLC circuit at resonance.
• The average power delivered to an RLC circuit is affected by the phase angle and is given by
${P}_{\text{ave}}={I}_{\text{rms}}{V}_{\text{rms}}\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\varphi \text{,}$
$\text{cos}\phantom{\rule{0.25em}{0ex}}\varphi$ is called the power factor, which ranges from 0 to 1.

## Conceptual questions

Does the resonant frequency of an AC circuit depend on the peak voltage of the AC source? Explain why or why not.

Suppose you have a motor with a power factor significantly less than 1. Explain why it would be better to improve the power factor as a method of improving the motor’s output, rather than to increase the voltage input.

## Problems&Exercises

An RL circuit consists of a $\mathrm{40.0 \Omega }$ resistor and a 3.00 mH inductor. (a) Find its impedance $Z$ at 60.0 Hz and 10.0 kHz. (b) Compare these values of $Z$ with those found in [link] in which there was also a capacitor.

(a) $\mathrm{40.02 \Omega }$ at 60.0 Hz, $\mathrm{193 \Omega }$ at 10.0 kHz

(b) At 60 Hz, with a capacitor, $\mathrm{Z=531 \Omega }$ , over 13 times as high as without the capacitor. The capacitor makes a large difference at low frequencies. At 10 kHz, with a capacitor $\mathrm{Z=190 \Omega }$ , about the same as without the capacitor. The capacitor has a smaller effect at high frequencies.

An RC circuit consists of a $\mathrm{40.0 \Omega }$ resistor and a $\text{5.00 μF}$ capacitor. (a) Find its impedance at 60.0 Hz and 10.0 kHz. (b) Compare these values of $Z$ with those found in [link] , in which there was also an inductor.

An LC circuit consists of a $3\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\text{mH}$ inductor and a $5\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\mathrm{\mu F}$ capacitor. (a) Find its impedance at 60.0 Hz and 10.0 kHz. (b) Compare these values of $Z$ with those found in [link] in which there was also a resistor.

(a) $\mathrm{529 \Omega }$ at 60.0 Hz, $\mathrm{185 \Omega }$ at 10.0 kHz

(b) These values are close to those obtained in [link] because at low frequency the capacitor dominates and at high frequency the inductor dominates. So in both cases the resistor makes little contribution to the total impedance.

What is the resonant frequency of a 0.500 mH inductor connected to a $\text{40.0 μF}$ capacitor?

To receive AM radio, you want an RLC circuit that can be made to resonate at any frequency between 500 and 1650 kHz. This is accomplished with a fixed $\text{1.00 μH}$ inductor connected to a variable capacitor. What range of capacitance is needed?

9.30 nF to 101 nF

Suppose you have a supply of inductors ranging from 1.00 nH to 10.0 H, and capacitors ranging from 1.00 pF to 0.100 F. What is the range of resonant frequencies that can be achieved from combinations of a single inductor and a single capacitor?

What capacitance do you need to produce a resonant frequency of 1.00 GHz, when using an 8.00 nH inductor?

3.17 pF

What inductance do you need to produce a resonant frequency of 60.0 Hz, when using a $\mathrm{2.00 \mu F}$ capacitor?

The lowest frequency in the FM radio band is 88.0 MHz. (a) What inductance is needed to produce this resonant frequency if it is connected to a 2.50 pF capacitor? (b) The capacitor is variable, to allow the resonant frequency to be adjusted to as high as 108 MHz. What must the capacitance be at this frequency?

(a) $\mathrm{1.31 \mu H}$

(b) 1.66 pF

An RLC series circuit has a $\mathrm{2.50 \Omega }$ resistor, a $\mathrm{100 \mu H}$ inductor, and an $\mathrm{80.0 \mu F}$ capacitor.(a) Find the circuit’s impedance at 120 Hz. (b) Find the circuit’s impedance at 5.00 kHz. (c) If the voltage source has ${V}_{\text{rms}}=5\text{.}\text{60}\phantom{\rule{0.25em}{0ex}}\text{V}$ , what is ${I}_{\text{rms}}$ at each frequency? (d) What is the resonant frequency of the circuit? (e) What is ${I}_{\text{rms}}$ at resonance?

An RLC series circuit has a $\mathrm{1.00 k\Omega }$ resistor, a $\mathrm{150 \mu H}$ inductor, and a 25.0 nF capacitor. (a) Find the circuit’s impedance at 500 Hz. (b) Find the circuit’s impedance at 7.50 kHz. (c) If the voltage source has ${V}_{\text{rms}}=\text{408}\phantom{\rule{0.25em}{0ex}}\text{V}$ , what is ${I}_{\text{rms}}$ at each frequency? (d) What is the resonant frequency of the circuit? (e) What is ${I}_{\text{rms}}$ at resonance?

(a) $\mathrm{12.8 k\Omega }$

(b) $\mathrm{1.31 k\Omega }$

(c) 31.9 mA at 500 Hz, 312 mA at 7.50 kHz

(d) 82.2 kHz

(e) 0.408 A

An RLC series circuit has a $\mathrm{2.50 \Omega }$ resistor, a $\mathrm{100 \mu H}$ inductor, and an $\mathrm{80.0 \mu F}$ capacitor. (a) Find the power factor at $f=\mathrm{120 Hz}$ . (b) What is the phase angle at 120 Hz? (c) What is the average power at 120 Hz? (d) Find the average power at the circuit’s resonant frequency.

An RLC series circuit has a $\mathrm{1.00 k\Omega }$ resistor, a $\mathrm{150 \mu H}$ inductor, and a 25.0 nF capacitor. (a) Find the power factor at $f=\mathrm{7.50 Hz}$ . (b) What is the phase angle at this frequency? (c) What is the average power at this frequency? (d) Find the average power at the circuit’s resonant frequency.

(a) 0.159

(b) $\mathrm{80.9º}$

(c) 26.4 W

(d) 166 W

An RLC series circuit has a $\mathrm{200 \Omega }$ resistor and a 25.0 mH inductor. At 8000 Hz, the phase angle is $\mathrm{45.0º}$ . (a) What is the impedance? (b) Find the circuit’s capacitance. (c) If ${V}_{\text{rms}}=\text{408}\phantom{\rule{0.25em}{0ex}}\text{V}$ is applied, what is the average power supplied?

Referring to [link] , find the average power at 10.0 kHz.

16.0 W

#### Questions & Answers

how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
the range of objects and phenomena studied in physics is
Bethel Reply
what is Linear motion
Hamza Reply
straight line motion is called linear motion
then what
Amera
linear motion is a motion in a line, be it in a straight line or in a non straight line. It is the rate of change of distance.
Saeedul
Hi
aliyu
your are wrong Saeedul
Richard
Linear motion is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension
Jason
is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimensions.
Praise
what is a classical electrodynamics?
Marga
what is dynamics
Marga
dynamic is the force that stimulates change or progress within the system or process
Oze
what is the formula to calculate wavelength of the incident light
David Reply
if a spring is is stiffness of 950nm-1 what work will be done in extending the spring by 60mmp
Hassan Reply
State the forms of energy
Samzy Reply
machanical
Ridwan
Word : Mechanical wave Definition : The waves, which need a material medium for their propagation, e.g., Sound waves. \n\nOther Definition: The waves, which need a material medium for their propagation, are called mechanical waves. Mechanical waves are also called elastic waves. Sound waves, water waves are examples of mechanical waves.t Definition: wave consisting of periodic motion of matter; e.g. sound wave or water wave as opposed to electromagnetic wave.h
Clement Reply
correct
Akinpelu
what is mechanical wave
Akinpelu Reply
a wave which require material medium for its propagation
syed
The S.I unit for power is what?
Samuel Reply
watt
Okoli
Am I correct
Okoli
it can be in kilowatt, megawatt and so
Femi
yes
Femi
correct
Jaheim
kW
Akinpelu
OK that's right
Samuel
SI.unit of power is.watt=j/c.but kw.and Mw are bigger.umots
syed
What is physics
aish Reply
study of matter and its nature
Akinpelu
The word physics comes from a Greek word Physicos which means Nature.The Knowledge of Nature. It is branch of science which deals with the matter and energy and interaction between them.
Uniform
why in circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction
Syafiqah Reply
reasonable
Femi
because it is balanced by the inward acceleration otherwise known as centripetal acceleration
MUSTAPHA
What is a wave
Mutuma Reply
Tramsmission of energy through a media
Mateo
is the disturbance that carry materials as propagation from one medium to another
Akinpelu
mistakes thanks
Akinpelu
find the triple product of (A*B).C given that A =i + 4j, B=2i - 3j and C = i + k
Favour Reply
Difference between north seeking pole and south seeking pole
Stanley Reply

### Read also:

#### Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications? By By          