# 11.2 Density  (Page 2/3)

 Page 2 / 3

## Calculating the mass of a reservoir from its volume

A reservoir has a surface area of $\text{50}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{km}}^{2}$ and an average depth of 40.0 m. What mass of water is held behind the dam? (See [link] for a view of a large reservoir—the Three Gorges Dam site on the Yangtze River in central China.)

Strategy

We can calculate the volume $V$ of the reservoir from its dimensions, and find the density of water $\rho$ in [link] . Then the mass $m$ can be found from the definition of density

$\rho =\frac{m}{V}.$

Solution

Solving equation $\rho =m/V$ for $m$ gives $m=\rho V$ .

The volume $V$ of the reservoir is its surface area $A$ times its average depth $h$ :

$\begin{array}{lll}V& =& \text{Ah}=\left(\text{50.0}\phantom{\rule{0.25em}{0ex}}{\text{km}}^{2}\right)\left(\text{40.0}\phantom{\rule{0.25em}{0ex}}\text{m}\right)\\ & =& \left[\left(\text{50.0 k}{\text{m}}^{2}\right){\left(\frac{{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{m}}{1\phantom{\rule{0.25em}{0ex}}\text{km}}\right)}^{2}\right]\left(\text{40.0 m}\right)=2\text{.}\text{00}×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\end{array}$

The density of water $\rho$ from [link] is $1\text{.}\text{000}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$ . Substituting $V$ and $\rho$ into the expression for mass gives

$\begin{array}{lll}m& =& \left(1\text{.}\text{00}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left(2\text{.}\text{00}×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\right)\\ & =& 2.00×{\text{10}}^{\text{12}}\phantom{\rule{0.25em}{0ex}}\text{kg.}\end{array}$

Discussion

A large reservoir contains a very large mass of water. In this example, the weight of the water in the reservoir is $\text{mg}=1\text{.}\text{96}×{\text{10}}^{\text{13}}\phantom{\rule{0.25em}{0ex}}\text{N}$ , where $g$ is the acceleration due to the Earth’s gravity (about $9\text{.}\text{80}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$ ). It is reasonable to ask whether the dam must supply a force equal to this tremendous weight. The answer is no. As we shall see in the following sections, the force the dam must supply can be much smaller than the weight of the water it holds back.

## Section summary

• Density is the mass per unit volume of a substance or object. In equation form, density is defined as
$\rho =\frac{m}{V}.$
• The SI unit of density is ${\text{kg/m}}^{3}$ .

## Conceptual questions

Approximately how does the density of air vary with altitude?

Give an example in which density is used to identify the substance composing an object. Would information in addition to average density be needed to identify the substances in an object composed of more than one material?

[link] shows a glass of ice water filled to the brim. Will the water overflow when the ice melts? Explain your answer.

## Problems&Exercises

Gold is sold by the troy ounce (31.103 g). What is the volume of 1 troy ounce of pure gold?

$1\text{.}\text{610}\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{3}$

Mercury is commonly supplied in flasks containing 34.5 kg (about 76 lb). What is the volume in liters of this much mercury?

(a) What is the mass of a deep breath of air having a volume of 2.00 L? (b) Discuss the effect taking such a breath has on your body’s volume and density.

(a) 2.58 g

(b) The volume of your body increases by the volume of air you inhale. The average density of your body decreases when you take a deep breath, because the density of air is substantially smaller than the average density of the body before you took the deep breath.

A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces $\text{89}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{3}$ of water? (Note that the accuracy and practical applications of this technique are more limited than a variety of others that are based on Archimedes’ principle.)

$2\text{.}\text{70}\phantom{\rule{0.25em}{0ex}}{\text{g/cm}}^{3}$

Suppose you have a coffee mug with a circular cross section and vertical sides (uniform radius). What is its inside radius if it holds 375 g of coffee when filled to a depth of 7.50 cm? Assume coffee has the same density as water.

(a) A rectangular gasoline tank can hold 50.0 kg of gasoline when full. What is the depth of the tank if it is 0.500-m wide by 0.900-m long? (b) Discuss whether this gas tank has a reasonable volume for a passenger car.

(a) 0.163 m

(b) Equivalent to 19.4 gallons, which is reasonable

A trash compactor can reduce the volume of its contents to 0.350 their original value. Neglecting the mass of air expelled, by what factor is the density of the rubbish increased?

A 2.50-kg steel gasoline can holds 20.0 L of gasoline when full. What is the average density of the full gas can, taking into account the volume occupied by steel as well as by gasoline?

$7\text{.}9×{\text{10}}^{2}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0ex}{0ex}}{\text{kg/m}}^{3}$

What is the density of 18.0-karat gold that is a mixture of 18 parts gold, 5 parts silver, and 1 part copper? (These values are parts by mass, not volume.) Assume that this is a simple mixture having an average density equal to the weighted densities of its constituents.

$\text{15}\text{.}6\phantom{\rule{0.25em}{0ex}}{\text{g/cm}}^{3}$

There is relatively little empty space between atoms in solids and liquids, so that the average density of an atom is about the same as matter on a macroscopic scale—approximately ${\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$ . The nucleus of an atom has a radius about ${\text{10}}^{-5}$ that of the atom and contains nearly all the mass of the entire atom. (a) What is the approximate density of a nucleus? (b) One remnant of a supernova, called a neutron star, can have the density of a nucleus. What would be the radius of a neutron star with a mass 10 times that of our Sun (the radius of the Sun is $7×{\text{10}}^{8}\phantom{\rule{0.25em}{0ex}}\text{m}$ )?

(a) ${\text{10}}^{\text{18}}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$

(b) $2×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{m}$

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
What is thermal heat all about
why uniform circular motion is called a periodic motion?.
when a train start from A & it returns at same station A . what is its acceleration?
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
what are the types of radioactivity
Worku
what is static friction
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
definition of mass of conversion
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
Boniface
the range of objects and phenomena studied in physics is
Boniface