<< Chapter < Page Chapter >> Page >

Polarization by reflection

By now you can probably guess that Polaroid sunglasses cut the glare in reflected light because that light is polarized. You can check this for yourself by holding Polaroid sunglasses in front of you and rotating them while looking at light reflected from water or glass. As you rotate the sunglasses, you will notice the light gets bright and dim, but not completely black. This implies the reflected light is partially polarized and cannot be completely blocked by a polarizing filter.

[link] illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized light is preferentially refracted at the surface, so that the reflected light is left more horizontally polarized . The reasons for this phenomenon are beyond the scope of this text, but a convenient mnemonic for remembering this is to imagine the polarization direction to be like an arrow. Vertical polarization would be like an arrow perpendicular to the surface and would be more likely to stick and not be reflected. Horizontal polarization is like an arrow bouncing on its side and would be more likely to be reflected. Sunglasses with vertical axes would then block more reflected light than unpolarized light from other sources.

The schematic shows a block of glass in air. A ray labeled unpolarized light starts at the upper left and impinges on the center of the block. Centered on this ray is a symmetric star burst pattern of double headed arrows. From this point where this ray hits the glass block there emerges a reflected ray that goes up and to the right and a refracted ray that goes down and to the right. Both of these rays are labeled partially polarized light. The reflected ray has evenly spaced large black dots on it that are labeled perpendicular to plane of paper. Centered on each black dot is a double headed arrow that is rather short and is perpendicular to the ray. The refracted ray also has evenly spaced dots, but they are much smaller. Centered on each of these small black dots are quite large doubled headed arrows that are perpendicular to the refracted ray.
Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal polarization. After interaction with a surface, the vertical components are preferentially absorbed or refracted, leaving the reflected light more horizontally polarized. This is akin to arrows striking on their sides bouncing off, whereas arrows striking on their tips go into the surface.

Since the part of the light that is not reflected is refracted, the amount of polarization depends on the indices of refraction of the media involved. It can be shown that reflected light is completely polarized at a angle of reflection θ b size 12{θ rSub { size 8{b} } } {} , given by

tan θ b = n 2 n 1 ,

where n 1 size 12{n rSub { size 8{1} } } {} is the medium in which the incident and reflected light travel and n 2 size 12{n rSub { size 8{2} } } {} is the index of refraction of the medium that forms the interface that reflects the light. This equation is known as Brewster’s law    , and θ b size 12{θ rSub { size 8{b} } } {} is known as Brewster’s angle    , named after the 19th-century Scottish physicist who discovered them.

Things great and small: atomic explanation of polarizing filters

Polarizing filters have a polarization axis that acts as a slit. This slit passes electromagnetic waves (often visible light) that have an electric field parallel to the axis. This is accomplished with long molecules aligned perpendicular to the axis as shown in [link] .

The schematic shows a stack of long identical horizontal molecules. A vertical axis is drawn over the molecules.
Long molecules are aligned perpendicular to the axis of a polarizing filter. The component of the electric field in an EM wave perpendicular to these molecules passes through the filter, while the component parallel to the molecules is absorbed.

[link] illustrates how the component of the electric field parallel to the long molecules is absorbed. An electromagnetic wave is composed of oscillating electric and magnetic fields. The electric field is strong compared with the magnetic field and is more effective in exerting force on charges in the molecules. The most affected charged particles are the electrons in the molecules, since electron masses are small. If the electron is forced to oscillate, it can absorb energy from the EM wave. This reduces the fields in the wave and, hence, reduces its intensity. In long molecules, electrons can more easily oscillate parallel to the molecule than in the perpendicular direction. The electrons are bound to the molecule and are more restricted in their movement perpendicular to the molecule. Thus, the electrons can absorb EM waves that have a component of their electric field parallel to the molecule. The electrons are much less responsive to electric fields perpendicular to the molecule and will allow those fields to pass. Thus the axis of the polarizing filter is perpendicular to the length of the molecule.

The figure contains two schematics. The first schematic shows a long molecule. An EM wave goes through the molecule. The ray of the EM wave is at ninety degrees to the molecular axis and the electric field of the EM wave oscillates along the molecular axis. After passing the long molecule, the magnitude of the oscillations of the EM wave are significantly reduced. The second schematic shows a similar drawing, except that the EM wave oscillates perpendicular to the axis of the long molecule. After passing the long molecule, the magnitude of the oscillation of the EM wave is unchanged.
Artist’s conception of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron absorbs energy and reduces the intensity of the component of the EM wave that is parallel to the molecule.

Questions & Answers

find the density of a fluid in which a hydrometer having a density of 0.750g/mL floats with 92.0% of its volume submerged.
Neshrin Reply
Uniform speed
(a)calculate the buoyant force on a 2.00-L Helium balloon.(b) given the mass of the rubber in the balloon is 1.50g. what is the vertical force on the balloon if it is let go? you can neglect the volume of the rubber.
Neshrin Reply
To Long
pleaseee. can you get the answer? I can wait till 12
a thick glass cup cracks when hot liquid is poured into it suddenly
Aiyelabegan Reply
because of the sudden contraction that takes place.
railway crack has gap between the end of each length because?
Aiyelabegan Reply
For expansion
Please i really find it dificult solving equations on physic, can anyone help me out?
Big Reply
what is the equation?
fersnels biprism spectrometer how to determined
Bala Reply
how to study the hall effect to calculate the hall effect coefficient of the given semiconductor have to calculate the carrier density by carrier mobility.
what is the difference between atomic physics and momentum
Nana Reply
find the dimensional equation of work,power,and moment of a force show work?
Emmanuel Reply
What's sup guys
cul and you all
cool you bro
so what is going on here
hello peeps
Michelson Morley experiment
Riya Reply
how are you
am good
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
how 2.68
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
the answer is 9.2m/s
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
the answer is 0.03n according to the 3rd law of motion if the are in same direction meaning they interact each other.
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
thanks jare
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
what is physic
zalmia Reply
please gave me answar
Study of matter and energy
physics is the science of matter and energy and their interactions
physics is the technology behind air and matter
hi sir
how easy to understanding physics sir
Easy to learn

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?