<< Chapter < Page Chapter >> Page >
  • Explain the concept of resistivity.
  • Use resistivity to calculate the resistance of specified configurations of material.
  • Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.

Material and shape dependence of resistance

The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in [link] is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might expect, the cylinder’s electric resistance R size 12{R} {} is directly proportional to its length L size 12{L} {} , similar to the resistance of a pipe to fluid flow. The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more current it can carry (again similar to the flow of fluid through a pipe). In fact, R size 12{R} {} is inversely proportional to the cylinder’s cross-sectional area A size 12{A} {} .

A cylindrical conductor of length L and cross section A is shown. The resistivity of the cylindrical section is represented as rho. The resistance of this cross section R is equal to rho L divided by A. The section of length L of cylindrical conductor is shown equivalent to a resistor represented by symbol R.
A uniform cylinder of length L size 12{L} {} and cross-sectional area A size 12{A} {} . Its resistance to the flow of current is similar to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional area A size 12{A} {} , the smaller its resistance.

For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different resistance to the flow of charge. We define the resistivity     ρ size 12{ρ} {} of a substance so that the resistance R size 12{R} {} of an object is directly proportional to ρ size 12{ρ} {} . Resistivity ρ size 12{ρ} {} is an intrinsic property of a material, independent of its shape or size. The resistance R size 12{R} {} of a uniform cylinder of length L size 12{L} {} , of cross-sectional area A size 12{A} {} , and made of a material with resistivity ρ size 12{ρ} {} , is

R = ρL A . size 12{R = { {ρL} over {A} } "."} {}

[link] gives representative values of ρ size 12{ρ} {} . The materials listed in the table are separated into categories of conductors, semiconductors, and insulators, based on broad groupings of resistivities. Conductors have the smallest resistivities, and insulators have the largest; semiconductors have intermediate resistivities. Conductors have varying but large free charge densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors are intermediate, having far fewer free charges than conductors, but having properties that make the number of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique properties of semiconductors are put to use in modern electronics, as will be explored in later chapters.

Resistivities ρ size 12{ρ} {} Of various materials at 20º C
Material Resistivity ρ size 12{ρ} {} ( Ω m size 12{ %OMEGA cdot m} {} )
Conductors
Silver 1 . 59 × 10 8 size 12{1 "." "59" times "10" rSup { size 8{ - 8} } } {}
Copper 1 . 72 × 10 8 size 12{1 "." "72" times "10" rSup { size 8{ - 8} } } {}
Gold 2 . 44 × 10 8 size 12{2 "." "44" times "10" rSup { size 8{ - 8} } } {}
Aluminum 2 . 65 × 10 8 size 12{2 "." "65" times "10" rSup { size 8{ - 8} } } {}
Tungsten 5 . 6 × 10 8 size 12{5 "." 6 times "10" rSup { size 8{ - 8} } } {}
Iron 9 . 71 × 10 8 size 12{9 "." "71" times "10" rSup { size 8{ - 8} } } {}
Platinum 10 . 6 × 10 8 size 12{"10" "." 6 times "10" rSup { size 8{ - 8} } } {}
Steel 20 × 10 8 size 12{"20" times "10" rSup { size 8{ - 8} } } {}
Lead 22 × 10 8 size 12{"22" times "10" rSup { size 8{ - 8} } } {}
Manganin (Cu, Mn, Ni alloy) 44 × 10 8 size 12{"44" times "10" rSup { size 8{ - 8} } } {}
Constantan (Cu, Ni alloy) 49 × 10 8 size 12{"49" times "10" rSup { size 8{ - 8} } } {}
Mercury 96 × 10 8 size 12{"96" times "10" rSup { size 8{ - 8} } } {}
Nichrome (Ni, Fe, Cr alloy) 100 × 10 8 size 12{"100" times "10" rSup { size 8{ - 8} } } {}
Semiconductors Values depend strongly on amounts and types of impurities
Carbon (pure) 3.5 × 10 5
Carbon ( 3.5 60 ) × 10 5
Germanium (pure) 600 × 10 3
Germanium ( 1 600 ) × 10 3 size 12{ \( 1 - "600" \) times "10" rSup { size 8{ - 3} } } {}
Silicon (pure) 2300
Silicon 0.1–2300
Insulators
Amber 5 × 10 14 size 12{5 times "10" rSup { size 8{"14"} } } {}
Glass 10 9 10 14 size 12{"10" rSup { size 8{9} } - "10" rSup { size 8{"14"} } } {}
Lucite >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Mica 10 11 10 15 size 12{"10" rSup { size 8{"11"} } - "10" rSup { size 8{"15"} } } {}
Quartz (fused) 75 × 10 16 size 12{"75" times "10" rSup { size 8{"16"} } } {}
Rubber (hard) 10 13 10 16 size 12{"10" rSup { size 8{"13"} } - "10" rSup { size 8{"16"} } } {}
Sulfur 10 15 size 12{"10" rSup { size 8{"15"} } } {}
Teflon >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Wood 10 8 10 11 size 12{"10" rSup { size 8{8} } - "10" rSup { size 8{"11"} } } {}

Questions & Answers

What is heat
Maryam Reply
can a wheat stone bridge balance
jharana Reply
what is Norton's theorm
jharana
an atom is symply a smallest unsplittable particle that makes up a compound
levison Reply
what is atom
Ismaila Reply
nano parricles are arranging periodic
Bala
An atom is the smallest indivisible particle that can take place in a chemical reaction
Maryam
it consist of proton,neutron and electron
Ifada
An atom is the smallest constituent unit of ordinary matter that has the properties of a chemical element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small; typical sizes are around 100 picometers (a ten-billionth of a meter, in the short scale)
Baba
an atom is a smallest particles that take place in chemical reaction.
Gabriel
atom itself also contains further smallest particles e.g quarks
Baba
the smallest particle of a substance that can exist by itself or be combined with other atoms to form a molecule
Emmanuel
Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.077 m2, and the magnitude of the fluid velocity is 3.50 m/s. (a) What is the fluid speed at points in the pipe where the cross
fagbeji Reply
A particle behave like a wave and we do not why?
WAQAR
what's the period of velocity 4cm/s at displacement 10cm
Andrew Reply
What is physics
LordRalph Reply
the branch of science concerned with the nature and properties of matter and energy. The subject matter of physics includes mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms.
Aluko
and the word of matter is anything that have mass and occupied space
Aluko
what is phyices
Aurang Reply
Whats the formula
Okiri Reply
1/v+1/u=1/f
Aluko
what aspect of black body spectrum forced plank to purpose quantization of energy level in its atoms and molicules
Shoaib Reply
a man has created by who?
Angel Reply
What type of experimental evidence indicates that light is a wave
Edeh Reply
double slit experiment
Eric
The S. L. Unit of sound energy is
Chukwuemeka Reply
Hertz
jharana
what's the conversation like?
ENOBONG Reply
some sort of blatherring or mambo jambo you may say
muhammad
I still don't understand what this group is all about oo
ENOBONG
no
uchenna
ufff....this associated with physics ..so u can ask questions related to all topics of physics..
muhammad
what is sound?
Bella
what is upthrust
Mercy Reply
what is upthrust
Olisa
Up thrust is a force
Samuel
upthrust is a upward force that acts vertical in the ground surface.
Rodney
yes rodney's answer z correct
Paul
what is centre of gravity?
Paul
you think the human body could produce such Force
Anthony
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask