# 3.3 Vector addition and subtraction: analytical methods

 Page 1 / 6

## Learning objectives

By the end of this section, you will be able to:

• Understand the rules of vector addition and subtraction using analytical methods.
• Apply analytical methods to determine vertical and horizontal component vectors.
• Apply analytical methods to determine the magnitude and direction of a resultant vector.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical representations. (S.P. 1.5, 2.1, 2.2)

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and protractor of graphical methods. Part of the graphical technique is retained, because vectors are still represented by arrows for easy visualization. However, analytical methods are more concise, accurate, and precise than graphical methods, which are limited by the accuracy with which a drawing can be made. Analytical methods are limited only by the accuracy and precision with which physical quantities are known.

## Resolving a vector into perpendicular components

Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular directions are independent. We very often need to separate a vector into perpendicular components. For example, given a vector like $\mathbf{A}$ in [link] , we may wish to find which two perpendicular vectors, ${\mathbf{A}}_{x}$ and ${\mathbf{A}}_{y}$ , add to produce it.

${\mathbf{A}}_{x}$ and ${\mathbf{A}}_{y}$ are defined to be the components of $\mathbf{A}$ along the x - and y -axes. The three vectors $\mathbf{A}$ , ${\mathbf{A}}_{x}$ , and ${\mathbf{A}}_{y}$ form a right triangle:

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include both magnitude and direction). The relationship does not apply for the magnitudes alone. For example, if ${\mathbf{\text{A}}}_{x}=3 m$ east, ${\mathbf{\text{A}}}_{y}=4 m$ north, and $\mathbf{\text{A}}=5 m$ north-east, then it is true that the vectors . However, it is not true that the sum of the magnitudes of the vectors is also equal. That is,

Thus,

${A}_{x}+{A}_{y}\ne A$

If the vector $\mathbf{A}$ is known, then its magnitude $A$ (its length) and its angle $\theta$ (its direction) are known. To find ${A}_{x}$ and ${A}_{y}$ , its x - and y -components, we use the following relationships for a right triangle.

${A}_{x}=A\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\theta$

and

${A}_{y}=A\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta \text{.}$

Suppose, for example, that $\mathbf{A}$ is the vector representing the total displacement of the person walking in a city considered in Kinematics in Two Dimensions: An Introduction and Vector Addition and Subtraction: Graphical Methods .

how vapour pressure of a liquid lost through convection
Roofs are sometimes pushed off vertically during a tropical cyclone, and buildings sometimes explode outward when hit by a tornado. Use Bernoulli’s principle to explain these phenomena.
Aliraza
what's the basic si unit of acceleration
Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.
Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators. Discuss how this relates to the free charges in metals that make them good conductors.
Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM radiation? Explain briefly.
Determine the total force and the absolute pressure on the bottom of a swimming pool 28.0m by 8.5m whose uniform depth is 1 .8m.
how solve this problem?
Foday
P(pressure)=density ×depth×acceleration due to gravity Force =P×Area(28.0x8.5)
Fomukom
for the answer to complete, the units need specified why
That's just how the AP grades. Otherwise, you could be talking about m/s when the answer requires m/s^2. They need to know what you are referring to.
Kyle
Suppose a speck of dust in an electrostatic precipitator has 1.0000×1012 protons in it and has a net charge of –5.00 nC (a very large charge for a small speck). How many electrons does it have?
how would I work this problem
Alexia
how can you have not an integer number of protons? If, on the other hand it supposed to be 1e12, then 1.6e-19C/proton • 1e12 protons=1.6e-7 C is the charge of the protons in the speck, so the difference between this and 5e-9C is made up by electrons
Igor
what is angular velocity
angular velocity can be defined as the rate of change in radian over seconds.
Fidelis
Why does earth exert only a tiny downward pull?
hello
Islam
Why is light bright?
an 8.0 capacitor is connected by to the terminals of 60Hz whoes rms voltage is 150v. a.find the capacity reactance and rms to the circuit
thanks so much. i undersooth well
what is physics
is the study of matter in relation to energy
Kintu
physics can be defined as the natural science that deals with the study of motion through space,time along with its related concepts which are energy and force
Fidelis