# 23.10 Rl circuits

 Page 1 / 3

## Learning objectives

By the end of this section, you will be able to:

• Calculate the current in an RL circuit after a specified number of characteristic time steps.
• Calculate the characteristic time of an RL circuit.
• Sketch the current in an RL circuit over time.

We know that the current through an inductor $L$ cannot be turned on or off instantaneously. The change in current changes flux, inducing an emf opposing the change (Lenz’s law). How long does the opposition last? Current will flow and can be turned off, but how long does it take? [link] shows a switching circuit that can be used to examine current through an inductor as a function of time.

When the switch is first moved to position 1 (at $t=0$ ), the current is zero and it eventually rises to ${I}_{0}=\text{V/R}$ , where $R$ is the total resistance of the circuit. The opposition of the inductor $L$ is greatest at the beginning, because the amount of change is greatest. The opposition it poses is in the form of an induced emf, which decreases to zero as the current approaches its final value. The opposing emf is proportional to the amount of change left. This is the hallmark of an exponential behavior, and it can be shown with calculus that

is the current in an RL circuit when switched on (Note the similarity to the exponential behavior of the voltage on a charging capacitor). The initial current is zero and approaches ${I}_{0}=\text{V/R}$ with a characteristic time constant     $\tau$ for an RL circuit, given by

$\tau =\frac{L}{R}\text{,}$

where $\tau$ has units of seconds, since $\text{1}\phantom{\rule{0.25em}{0ex}}\text{H}\text{=}\text{1}\phantom{\rule{0.25em}{0ex}}\text{Ω}\text{·}\text{s}$ . In the first period of time $\tau$ , the current rises from zero to $0\text{.}\text{632}{I}_{0}$ , since $I={I}_{0}\left(1-{e}^{-1}\right)={I}_{0}\left(1-0\text{.}\text{368}\right)=0\text{.}\text{632}{I}_{0}$ . The current will go 0.632 of the remainder in the next time $\tau$ . A well-known property of the exponential is that the final value is never exactly reached, but 0.632 of the remainder to that value is achieved in every characteristic time $\tau$ . In just a few multiples of the time $\tau$ , the final value is very nearly achieved, as the graph in [link] (b) illustrates.

The characteristic time $\tau$ depends on only two factors, the inductance $L$ and the resistance $R$ . The greater the inductance $L$ , the greater $\tau$ is, which makes sense since a large inductance is very effective in opposing change. The smaller the resistance $R$ , the greater $\tau$ is. Again this makes sense, since a small resistance means a large final current and a greater change to get there. In both cases—large $L$ and small $R$ —more energy is stored in the inductor and more time is required to get it in and out.

When the switch in [link] (a) is moved to position 2 and cuts the battery out of the circuit, the current drops because of energy dissipation by the resistor. But this is also not instantaneous, since the inductor opposes the decrease in current by inducing an emf in the same direction as the battery that drove the current. Furthermore, there is a certain amount of energy, $\left(\text{1/2}\right){\text{LI}}_{0}^{2}$ , stored in the inductor, and it is dissipated at a finite rate. As the current approaches zero, the rate of decrease slows, since the energy dissipation rate is ${I}^{2}R$ . Once again the behavior is exponential, and $I$ is found to be

Determine the total force and the absolute pressure on the bottom of a swimming pool 28.0m by 8.5m whose uniform depth is 1 .8m.
for the answer to complete, the units need specified why
That's just how the AP grades. Otherwise, you could be talking about m/s when the answer requires m/s^2. They need to know what you are referring to.
Kyle
Suppose a speck of dust in an electrostatic precipitator has 1.0000×1012 protons in it and has a net charge of –5.00 nC (a very large charge for a small speck). How many electrons does it have?
how would I work this problem
Alexia
how can you have not an integer number of protons? If, on the other hand it supposed to be 1e12, then 1.6e-19C/proton • 1e12 protons=1.6e-7 C is the charge of the protons in the speck, so the difference between this and 5e-9C is made up by electrons
Igor
what is angular velocity
angular velocity can be defined as the rate of change in radian over seconds.
Fidelis
Why does earth exert only a tiny downward pull?
hello
Islam
Why is light bright?
an 8.0 capacitor is connected by to the terminals of 60Hz whoes rms voltage is 150v. a.find the capacity reactance and rms to the circuit
thanks so much. i undersooth well
what is physics
is the study of matter in relation to energy
Kintu
physics can be defined as the natural science that deals with the study of motion through space,time along with its related concepts which are energy and force
Fidelis
a submersible pump is dropped a borehole and hits the level of water at the bottom of the borehole 5 seconds later.determine the level of water in the borehole
what is power?
power P = Work done per second W/ t. It means the more power, the stronger machine
Sphere
e.g. heart Uses 2 W per beat.
Rohit
A spherica, concave shaving mirror has a radius of curvature of 32 cm .what is the magnification of a persons face. when it is 12cm to the left of the vertex of the mirror
did you solve?
Shii
1.75cm
Ridwan
my name is Abu m.konnek I am a student of a electrical engineer and I want you to help me
Abu
the magnification k = f/(f-d) with focus f = R/2 =16 cm; d =12 cm k = 16/4 =4
Sphere
what do we call velocity
Kings
A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
hi
Godfred
Godfred
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag