<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define pressure.
  • Explain the relationship between pressure and force.
  • Calculate force given pressure and area.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 7.A.1.1 The student is able to make claims about how the pressure of an ideal gas is connected to the force exerted by molecules on the walls of the container, and how changes in pressure affect the thermal equilibrium of the system. (S.P. 6.4, 7.2)

You have no doubt heard the word pressure    being used in relation to blood (high or low blood pressure) and in relation to the weather (high- and low-pressure weather systems). These are only two of many examples of pressures in fluids. Pressure P size 12{P} {} is defined as

P = F A size 12{P= { {F} over {A} } } {}

where F size 12{P} {} is a force applied to an area A size 12{P} {} that is perpendicular to the force.

Pressure

Pressure is defined as the force divided by the area perpendicular to the force over which the force is applied, or

P = F A . size 12{P= { {F} over {A} } } {}

A given force can have a significantly different effect depending on the area over which the force is exerted, as shown in [link] . The SI unit for pressure is the pascal , where

1 Pa = 1 N/m 2 . size 12{1`"Pa"=1`"Nm" rSup { size 8{2} } } {}

In addition to the pascal, there are many other units for pressure that are in common use. In meteorology, atmospheric pressure is often described in units of millibar (mb), where

100 mb = 1 × 10 4 Pa  . size 12{"100"`"mb"=1 times "10" rSup { size 8{5} } `"Pa"} {}

Pounds per square inch lb/in 2 or psi size 12{ left ("lb/in" rSup { size 8{2} } `"or"``"psi" right )} {} is still sometimes used as a measure of tire pressure, and millimeters of mercury (mm Hg) is still often used in the measurement of blood pressure. Pressure is defined for all states of matter but is particularly important when discussing fluids.

In figure a, the person is poked with a finger exerting a small pressure due to the large area of contact and, in b, he is poked with a syringe exerting a large pressure due to the small area of contact.
(a) While the person being poked with the finger might be irritated, the force has little lasting effect. (b) In contrast, the same force applied to an area the size of the sharp end of a needle is great enough to break the skin.

Making connections: gas particles in a container

A rectangular figure represents a closed container a closed container with dark-blue spheres representing particles. Each particle has an arrow pointing in a different direction. Two particles show arrows pointing toward the edge of the container. Two particles point toward each other.
Gas particles vibrate within a closed container.

Imagine a closed container full of quickly vibrating gas particles. As the particles rapidly move around the container, they will repeatedly strike each other and the walls of the container.

When the particles strike the walls, a few interesting changes will occur.

Gas2a is identical yet smaller to the previous Gas1 figure above with five particles each with arrows pointing in different directions. Gas2b has the same size rectangle but many more particles.
The figure on the left shows gas particles traveling within a closed container. As the particles travel, they collide with each other and with the container walls. The figure on the right shows an increased number of gas particles within the container, which will result in an increased number of collisions.

Each time the particles strike the walls of this container, they will apply a force to the container walls. An increase in gas particles will result in more collisions, and a greater force will be applied. The increased force will result in an increased pressure on the container walls, as the areas of the container walls remain constant.

Gas3a is a rectangle with four particles pointing in different directions. For three of the arrows, they touch the edge of the rectangle and a short red arrow is reflected from the wall with an F label. Gas3b also has 4 particles with blue arrows and three of the arrows point to the edge of the rectangle. Each of the blue arrows pointing away from the blue spheres is longer than the arrows in figure Gas3a. Each of the three red arrows in figure Gas3b reflecting off the wall are also longer than the blue arrows in figure Gas3a.
A force F is placed upon the particles each time they strike the container walls. These forces result in new trajectories, as shown by the red arrows. Because the particles in the figure on the right are moving more quickly, they experience a larger force than those shown in the figure on the left.

If the speed of the particles is increased, then each particle will experience a greater change in momentum when it strikes a container wall. Just like a fast-moving tennis ball recoiling off a hard surface, the greater the particle's momentum, the more force it will experience when it collides. (For verification, see the impulse-momentum theorem described in Chapter 8.)

However, the more interesting change will be at the wall itself. Due to Newton's third law, it is not only the force on the particle that will increase, but the force on the container will increase as well! While not all particles will move with the same velocity, or strike the wall in the same way, they will experience an average change in momentum upon each collision. The force that these particles impart to the container walls is a good measure of this average change in momentum. Both of these relationships will be useful in Chapter 12, as you consider the ideal gas law. For now, it is good to recognize that laws commonly used to understand macroscopic phenomena can be applied to phenomena at the particle level as well.

Questions & Answers

what is angular velocity
Obaapa Reply
Why does earth exert only a tiny downward pull?
Mya Reply
hello
Islam
Why is light bright?
Abraham Reply
what is radioactive element
Attah Reply
an 8.0 capacitor is connected by to the terminals of 60Hz whoes rms voltage is 150v. a.find the capacity reactance and rms to the circuit
Aisha Reply
thanks so much. i undersooth well
Valdes Reply
what is physics
Nwafor Reply
is the study of matter in relation to energy
Kintu
a submersible pump is dropped a borehole and hits the level of water at the bottom of the borehole 5 seconds later.determine the level of water in the borehole
Obrian Reply
what is power?
aron Reply
power P = Work done per second W/ t. It means the more power, the stronger machine
Sphere
e.g. heart Uses 2 W per beat.
Rohit
A spherica, concave shaving mirror has a radius of curvature of 32 cm .what is the magnification of a persons face. when it is 12cm to the left of the vertex of the mirror
Alona Reply
did you solve?
Shii
1.75cm
Ridwan
my name is Abu m.konnek I am a student of a electrical engineer and I want you to help me
Abu
the magnification k = f/(f-d) with focus f = R/2 =16 cm; d =12 cm k = 16/4 =4
Sphere
what do we call velocity
Kings
A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
Kavita Reply
hi
Godfred
what about the wind vane
Godfred
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
Anurag Reply
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag
What was the previous far point of a patient who had laser correction that reduced the power of her eye by 7.00 D, producing a normal distant vision power of 50.0 D for her?
Jaydie Reply
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Jaydie
29/20 ? maybes
Ju
In what ways does physics affect the society both positively or negatively
Princewill Reply
how can I read physics...am finding it difficult to understand...pls help
rerry Reply
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
Practice Key Terms 1

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask