<< Chapter < Page Chapter >> Page >

But because particle 2 is initially at rest, this equation becomes

m 1 v 1 x = m 1 v 1 x + m 2 v 2 x .

The components of the velocities along the x size 12{x} {} -axis have the form v cos θ size 12{v`"cos"`θ} {} . Because particle 1 initially moves along the x size 12{x} {} -axis, we find v 1 x = v 1 .

Conservation of momentum along the x size 12{x} {} -axis gives the following equation:

m 1 v 1 = m 1 v 1 cos θ 1 + m 2 v 2 cos θ 2 ,

where θ 1 size 12{θ rSub { size 8{1} } } {} and θ 2 size 12{θ rSub { size 8{2} } } {} are as shown in [link] .

Conservation of momentum along the x size 12{x} {} -axis

m 1 v 1 = m 1 v 1 cos θ 1 + m 2 v 2 cos θ 2

Along the y size 12{y} {} -axis, the equation for conservation of momentum is

p 1 y + p 2 y = p 1 y + p 2 y

or

m 1 v 1 y + m 2 v 2 y = m 1 v 1 y + m 2 v 2 y .

But v 1 y is zero, because particle 1 initially moves along the x size 12{x} {} -axis. Because particle 2 is initially at rest, v 2 y is also zero. The equation for conservation of momentum along the y size 12{y} {} -axis becomes

0 = m 1 v 1 y + m 2 v 2 y .

The components of the velocities along the y size 12{y} {} -axis have the form v sin θ size 12{v`"sin"`θ} {} .

Thus, conservation of momentum along the y size 12{y} {} -axis gives the following equation:

0 = m 1 v 1 sin θ 1 + m 2 v 2 sin θ 2 .

Conservation of momentum along the y size 12{y} {} -axis

0 = m 1 v 1 sin θ 1 + m 2 v 2 sin θ 2

The equations of conservation of momentum along the x size 12{x} {} -axis and y size 12{y} {} -axis are very useful in analyzing two-dimensional collisions of particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to find two unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic level.

Determining the final velocity of an unseen object from the scattering of another object

Suppose the following experiment is performed. A 0.250-kg object m 1 is slid on a frictionless surface into a dark room, where it strikes an initially stationary object with mass of 0.400 kg m 2 size 12{ left (m rSub { size 8{2} } right )} {} . The 0.250-kg object emerges from the room at an angle of 45 . size 12{"45" "." 0°} {} with its incoming direction.

The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the collision. Calculate the magnitude and direction of the velocity ( v 2 and θ 2 ) of the 0.400-kg object after the collision.

Strategy

Momentum is conserved because the surface is frictionless. The coordinate system shown in [link] is one in which m 2 size 12{m rSub { size 8{2} } } {} is originally at rest and the initial velocity is parallel to the x size 12{x} {} -axis, so that conservation of momentum along the x size 12{x} {} - and y size 12{y} {} -axes is applicable.

Everything is known in these equations except v 2 and θ 2 , which are precisely the quantities we wish to find. We can find two unknowns because we have two independent equations: the equations describing the conservation of momentum in the x - and y -directions.

Solution

Solving m 1 v 1 = m 1 v 1 cos θ 1 + m 2 v 2 cos θ 2 for v 2 cos θ 2 and 0 = m 1 v 1 sin θ 1 + m 2 v 2 sin θ 2 for v 2 sin θ 2 and taking the ratio yields an equation (in which θ 2 is the only unknown quantity. Applying the identity tan θ = sin θ cos θ , we obtain:

tan θ 2 = v 1 sin θ 1 v 1 cos θ 1 v 1 .

Entering known values into the previous equation gives

tan θ 2 = 1 . 50 m/s 0 . 7071 1 . 50 m/s 0 . 7071 2 . 00 m/s = 1 . 129 . size 12{"tan"θ rSub { size 8{2} } = { { left (1 "." "50"" m/s" right ) left (0 "." "7071" right )} over { left (1 "." "50"" m/s" right ) left (0 "." "7071" right ) - 2 "." "00" "m/s"} } = - 1 "." "129"} {}

Thus,

θ 2 = tan 1 1 . 129 = 311 . 312º . size 12{θ rSub { size 8{2} } ="tan" rSup { size 8{ - 1} } left ( - 1 "." "129" right )="311" "." 5° approx "312"°} {}

Angles are defined as positive in the counter clockwise direction, so this angle indicates that m 2 is scattered to the right in [link] , as expected (this angle is in the fourth quadrant). Either equation for the x - or y -axis can now be used to solve for v 2 , but the latter equation is easiest because it has fewer terms.

Questions & Answers

what is a half life
Mama Reply
the time taken for a radioactive element to decay by half of its original mass
ken
what is radioactive element
mohammed
Half of the total time required by a radioactive nuclear atom to totally disintegrate
Justice
radioactive elements are those with unstable nuclei(ie have protons more than neutrons, or neutrons more than protons
Justice
in other words, the radioactive atom or elements have unequal number of protons to neutrons.
Justice
state the laws of refraction
Fabian
state laws of reflection
Fabian
Why does a bicycle rider bends towards the corner when is turning?
Mac
When do we say that the stone thrown vertically up wards accelerate negatively?
Mac
Give two importance of insulator placed between plates of a capacitor.
Mac
Macho had a shoe with a big sole moving in mudy Road, shanitah had a shoe with a small sole. Give reasons for those two cases.
Mac
when was the name taken from
Biola Reply
retardation of a car
Biola
when was the name retardation taken
Biola
did you mean a motion with velocity decreases uniformly by the time? then, the vector acceleration is opposite direction with vector velocity
Sphere
Atomic transmutation
Basirat Reply
An atom is the smallest indivisible particular of an element
mosco Reply
what is an atomic
Awene Reply
reference on periodic table
Titus Reply
what Is resonance?
Mozam Reply
phenomena of increasing amplitude from normal position of a substance due to some external source.
akif
What is a black body
Amey Reply
Black body is the ideal body can absorb and emit all radiation
Ahmed
the emissivity of black body is 1. it is a perfect absorber and emitter of heat.
Busayo
Why is null measurement accurate than standard voltmeter
Neemat Reply
that is photoelectric effect ?
Sabir Reply
It is the emission of electrons when light hits a material
Anita
Yeah
yusuf
is not just a material
Neemat
it is the surface of a metal
Neemat
what is the formula for time of flight ,maxjmum height and range
agangan Reply
what is an atom
Awene
how does a lightning rod protect a building from damage due to lightning ?
Faith Reply
due to its surface lustre but due to some factors it can corrode but not easily as it lightning surface
babels
pls what is mirage
babels
light rays bend to produce a displaced image of distant objects; it's an natural & optical phenomenon......
Deepika
what is the dimensional formula for torque
Otto Reply
L2MT-2
Jolly
same units of energy
Baber
what is same units of energy?
Baber
Nm
Sphere
Ws
Sphere
CV
Sphere
M L2 T -2
Dokku
it is like checking the dimension of force. which is ML2T-2
Busayo
ML2T-2
Joshua
M L2 T-2
Samuel
what is the significance of moment of inertia?
study
an object of mass 200g moves along a circular path of radius 0.5cm with a speed of 2m/s. calculate the angular velocity ii period iii frequency of the object
Faith Reply
w = 2/(0.005) period = PIE(0.005) f = 1/(PIE(0.005)) assuming uniform motion idk..
Georgie
w=2/(0.005)×100
isaac
supposed the speed on the path is constant angular velocity w (rad/s) = v (m/s) : R (m) period T (s) = 2*Pi * R : v frequency f ( Hz) = 1: T
Sphere
a=w.w.r=mv.v/r,w=mv/r=0.2×2/0.005=80rads-s
Mac
in the pole vaulter problem, how do they established that the mass is 5.00kg? where did that number come from?
-- Reply
Practice Key Terms 1

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask