<< Chapter < Page Chapter >> Page >

Power in fluid flow

Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to fluid flow, consider Bernoulli’s equation:

P + 1 2 ρv 2 + ρ gh = constant . size 12{P+ { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh"="constant"} {}

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if we multiply energy per unit volume by flow rate (volume per unit time), we get units of power. That is, ( E / V ) ( V / t ) = E / t size 12{ \( E/V \) \( V/t \) =E/t} {} . This means that if we multiply Bernoulli’s equation by flow rate Q size 12{Q} {} , we get power. In equation form, this is

P + 1 2 ρv 2 + ρ gh Q = power . size 12{ left (P+ { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh" right )Q="power"} {}

Each term has a clear physical meaning. For example, PQ size 12{ ital "PQ"} {} is the power supplied to a fluid, perhaps by a pump, to give it its pressure P size 12{P} {} . Similarly, 1 2 ρv 2 Q size 12{ { { size 8{1} } over { size 8{2} } } ρv rSup { size 8{2} } Q} {} is the power supplied to a fluid to give it its kinetic energy. And ρ ghQ size 12{ρ ital "ghQ"} {} is the power going to gravitational potential energy.

Making connections: power

Power is defined as the rate of energy transferred, or E / t size 12{E/t} {} . Fluid flow involves several types of power. Each type of power is identified with a specific type of energy being expended or changed in form.

Calculating power in a moving fluid

Suppose the fire hose in the previous example is fed by a pump that receives water through a hose with a 6.40-cm diameter coming from a hydrant with a pressure of 0 . 700 × 10 6 N/m 2 size 12{0 "." "700" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} . What power does the pump supply to the water?

Strategy

Here we must consider energy forms as well as how they relate to fluid flow. Since the input and output hoses have the same diameters and are at the same height, the pump does not change the speed of the water nor its height, and so the water’s kinetic energy and gravitational potential energy are unchanged. That means the pump only supplies power to increase water pressure by 0 . 92 × 10 6 N/m 2 size 12{0 "." "92" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} (from 0.700 × 10 6 N/m 2 size 12{0 "." "700" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} to 1.62 × 10 6 N/m 2 size 12{1 "." "62" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} ).

Solution

As discussed above, the power associated with pressure is

power = PQ = 0.920 × 10 6 N/m 2 40 . 0 × 10 3 m 3 /s . = 3 . 68 × 10 4 W = 36 . 8 kW .

Discussion

Such a substantial amount of power requires a large pump, such as is found on some fire trucks. (This kilowatt value converts to about 50 hp.) The pump in this example increases only the water’s pressure. If a pump—such as the heart—directly increases velocity and height as well as pressure, we would have to calculate all three terms to find the power it supplies.

Got questions? Get instant answers now!

Summary

  • Power in fluid flow is given by the equation P 1 + 1 2 ρv 2 + ρ gh Q = power , size 12{ left (P rSub { size 8{1} } + { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh" right )Q="power"} {} where the first term is power associated with pressure, the second is power associated with velocity, and the third is power associated with height.

Conceptual questions

Based on Bernoulli’s equation, what are three forms of energy in a fluid? (Note that these forms are conservative, unlike heat transfer and other dissipative forms not included in Bernoulli’s equation.)

Got questions? Get instant answers now!

Water that has emerged from a hose into the atmosphere has a gauge pressure of zero. Why? When you put your hand in front of the emerging stream you feel a force, yet the water’s gauge pressure is zero. Explain where the force comes from in terms of energy.

Got questions? Get instant answers now!

The old rubber boot shown in [link] has two leaks. To what maximum height can the water squirt from Leak 1? How does the velocity of water emerging from Leak 2 differ from that of leak 1? Explain your responses in terms of energy.

The picture shows a boot filled with water. The water is shown emerging from two leaks in the old boot, one in front and another at the back. The leaks are at the same height. The leaks are labeled as Leak 1 and Leak 2 respectively.
Water emerges from two leaks in an old boot.
Got questions? Get instant answers now!

Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect. Explain in terms of energy how the water can emerge from the nozzle against the opposing atmospheric pressure.

Got questions? Get instant answers now!

Problems&Exercises

Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300 MW. The dam generates electricity with water taken from a depth of 150 m and an average flow rate of 650 m 3 /s size 12{"650"`m rSup { size 8{3} } "/s"} {} . (a) Calculate the power in this flow. (b) What is the ratio of this power to the facility’s average of 680 MW?

(a) 9.56 × 10 8 W

(b) 1.4

Got questions? Get instant answers now!

A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 N of lift per square meter of wing. (The fact that a wing has a top and bottom surface does not double its area.) (a) At takeoff, an aircraft travels at 60.0 m/s, so that the air speed relative to the bottom of the wing is 60.0 m/s. Given the sea level density of air to be 1 . 29 kg/m 3 size 12{1 "." "29"`"kg/m" rSup { size 8{3} } } {} , how fast must it move over the upper surface to create the ideal lift? (b) How fast must air move over the upper surface at a cruising speed of 245 m/s and at an altitude where air density is one-fourth that at sea level? (Note that this is not all of the aircraft’s lift—some comes from the body of the plane, some from engine thrust, and so on. Furthermore, Bernoulli’s principle gives an approximate answer because flow over the wing creates turbulence.)

Got questions? Get instant answers now!

The left ventricle of a resting adult’s heart pumps blood at a flow rate of 83 . 0 cm 3 /s size 12{"83" "." 0`"cm" rSup { size 8{3} } "/s"} {} , increasing its pressure by 110 mm Hg, its speed from zero to 30.0 cm/s, and its height by 5.00 cm. (All numbers are averaged over the entire heartbeat.) Calculate the total power output of the left ventricle. Note that most of the power is used to increase blood pressure.

1.26 W

Got questions? Get instant answers now!

A sump pump (used to drain water from the basement of houses built below the water table) is draining a flooded basement at the rate of 0.750 L/s, with an output pressure of 3.00 × 10 5 N/m 2 size 12{3 "." "00" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } } {} . (a) The water enters a hose with a 3.00-cm inside diameter and rises 2.50 m above the pump. What is its pressure at this point? (b) The hose goes over the foundation wall, losing 0.500 m in height, and widens to 4.00 cm in diameter. What is the pressure now? You may neglect frictional losses in both parts of the problem.

Got questions? Get instant answers now!

Questions & Answers

What does mean ohms law imply
Victoria Reply
what is matter
folajin Reply
Anything that occupies space
Kevin
Any thing that has weight and occupies space
Victoria
Anything which we can feel by any of our 5 sense organs
Suraj
Right
Roben
thanks
Suraj
what is a sulphate
Alo
any answers
Alo
the time rate of increase in velocity is called
Blessing Reply
acceleration
Emma
What is uniform velocity
Victoria
Greetings,users of that wonderful app.
Frank Reply
how to solve pressure?
Cruz Reply
how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)
Cruz
P=F/A
Mira
can someone derive the formula a little bit deeper?
Bern
what is coplanar force?
OLADITI Reply
what is accuracy and precision
Peace Reply
How does a current follow?
Vineeta Reply
follow?
akif
which one dc or ac current.
akif
how does a current following?
Vineeta
?
akif
AC current
Vineeta
AC current follows due to changing electric field and magnetic field.
akif
you guys are just saying follow is flow not follow please
Abubakar
ok bro thanks
akif
flows
Abubakar
but i wanted to understand him/her in his own language
akif
but I think the statement is written in English not any other language
Abubakar
my mean that in which form he/she written this,will understand better in this form, i write.
akif
ok
Abubakar
ok thanks bro. my mistake
Vineeta
u are welcome
Abubakar
what is a semiconductor
Vineeta Reply
substances having lower forbidden gap between valence band and conduction band
akif
what is a conductor?
Vineeta
replace lower by higher only
akif
convert 56°c to kelvin
Abubakar
How does a current follow?
Vineeta
A semiconductor is any material whose conduction lies between that of a conductor and an insulator.
AKOWUAH
what is Atom? what is molecules? what is ions?
Abubakar Reply
What is a molecule
Samuel Reply
Is a unit of a compound that has two or more atoms either of the same or different atoms
Justice
A molecule is the smallest indivisible unit of a compound, Just like the atom is the smallest indivisible unit of an element.
Rachel
what is a molecule?
Vineeta
what is a vector
smith Reply
A quantity that has both a magnitude AND a direction. E.g velocity, acceleration, force are all vector quantities. Hope this helps :)
deage
what is the difference between velocity and relative velocity?
Mackson
Velocity is the rate of change of displacement with time. Relative velocity on the other hand is the velocity observed by an observer with respect to a reference point.
Chuks
what do u understand by Ultraviolet catastrophe?
Rufai
A certain freely falling object, released from rest, requires 1.5seconds to travel the last 30metres before it hits the ground. (a) Find the velocity of the object when it is 30metres above the ground.
Mackson
A vector is a quantity that has both magnitude and direction
Rufus
the velocity Is 20m/s-2
Rufus
derivation of electric potential
Rugunda Reply
V = Er = (kq/r^2)×r V = kq/r Where V: electric potential.
Chuks
what is the difference between simple motion and simple harmonic motion ?
syed
hi
Peace
hi
Rufus
hi
Chip
simple harmonic motion is a motion of tro and fro of simple pendulum and the likes while simple motion is a linear motion on a straight line.
Muinat
a body acceleration uniform from rest a 6m/s -2 for 8sec and decelerate uniformly to rest in the next 5sec,the magnitude of the deceleration is ?
Patricia Reply
The wording not very clear kindly
Moses
6
Leo
9.6m/s2
Jolly
the magnitude of deceleration =-9.8ms-2. first find the final velocity using the known acceleration and time. next use the calculated velocity to find the size of deceleration.
Mackson
wrong
Peace
-3.4m/s-2
Justice
Hi
Abj
Firstly, calculate final velocity of the body and then the deceleration. The final ans is,-9.6ms-2
Muinat
8x6= 48m/-2 use v=u + at 48÷5=9.6
Lawrence
can i define motion like this motion can be define as the continuous change of an object or position
Shuaib Reply
Any object in motion will come to rest after a time duration. Different objects may cover equal distance in different time duration. Therefore, motion is defined as a change in position depending on time.
Chuks

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask