<< Chapter < Page Chapter >> Page >

Systolic pressure

Systolic pressure is the maximum blood pressure.

Diastolic pressure

Diastolic pressure is the minimum blood pressure.

U.S. Army Spc. Monica Brown takes a soldier's blood pressure reading at the hospital on Forward Operating Base Salerno, Afghanistan, March 10, 2008.
In routine blood pressure measurements, an inflatable cuff is placed on the upper arm at the same level as the heart. Blood flow is detected just below the cuff, and corresponding pressures are transmitted to a mercury-filled manometer. (credit: U.S. Army photo by Spc. Micah E. Clare\4TH BCT)

Calculating height of iv bag: blood pressure and intravenous infusions

Intravenous infusions are usually made with the help of the gravitational force. Assuming that the density of the fluid being administered is 1.00 g/ml, at what height should the IV bag be placed above the entry point so that the fluid just enters the vein if the blood pressure in the vein is 18 mm Hg above atmospheric pressure? Assume that the IV bag is collapsible.

Strategy for (a)

For the fluid to just enter the vein, its pressure at entry must exceed the blood pressure in the vein (18 mm Hg above atmospheric pressure). We therefore need to find the height of fluid that corresponds to this gauge pressure.

Solution

We first need to convert the pressure into SI units. Since 1.0 mm Hg = 133 Pa ,

P = 18 mm Hg × 133 Pa 1.0 mm Hg = 2400 Pa . size 12{P="18"`"mm"`"Hg" times { {"133"`"Pa"} over {1 "." 0`"mm"`"Hg"} } ="2400"`"Pa" "." } {}

Rearranging P g = hρg size 12{P rSub { size 8{g} } =hρg} {} for h size 12{h} {} gives h = P g ρg size 12{h= { {P rSub { size 8{g} } } over {ρg} } } {} . Substituting known values into this equation gives

h = 2400 N /m 2 1 . 0 × 10 3 kg/m 3 9 . 80 m/s 2 = 0.24 m. alignl { stack { size 12{h= { {"2400"`"N/m" rSup { size 8{2} } } over { left (1 "." 0 times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right )} } } {} #" "=" 0" "." "24"`m "." {} } } {}

Discussion

The IV bag must be placed at 0.24 m above the entry point into the arm for the fluid to just enter the arm. Generally, IV bags are placed higher than this. You may have noticed that the bags used for blood collection are placed below the donor to allow blood to flow easily from the arm to the bag, which is the opposite direction of flow than required in the example presented here.

Got questions? Get instant answers now!

A barometer is a device that measures atmospheric pressure. A mercury barometer is shown in [link] . This device measures atmospheric pressure, rather than gauge pressure, because there is a nearly pure vacuum above the mercury in the tube. The height of the mercury is such that hρg = P atm size 12{hρg=P rSub { size 8{"atm"} } } {} . When atmospheric pressure varies, the mercury rises or falls, giving important clues to weather forecasters. The barometer can also be used as an altimeter, since average atmospheric pressure varies with altitude. Mercury barometers and manometers are so common that units of mm Hg are often quoted for atmospheric pressure and blood pressures. [link] gives conversion factors for some of the more commonly used units of pressure.

Mercury barometer has an evacuated glass tube inverted and placed in the mercury container. The height of the mercury column in the inverted tube is determined by the atmospheric pressure.
A mercury barometer measures atmospheric pressure. The pressure due to the mercury’s weight, hρg size 12{hρg} {} , equals atmospheric pressure. The atmosphere is able to force mercury in the tube to a height h size 12{h} {} because the pressure above the mercury is zero.
Conversion factors for various pressure units
Conversion to N/m 2 (Pa) Conversion from atm
1.0 atm = 1 . 013 × 10 5 N/m 2 size 12{1 "." 0`"atm"=1 "." "013" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } } {} 1.0 atm = 1 . 013 × 10 5 N/m 2 size 12{1 "." 0`"atm"=1 "." "013" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } } {}
1.0 dyne/cm 2 = 0 . 10 N/m 2 size 12{1 "." 0`"dyne/cm" rSup { size 8{2} } =0 "." "10"`"N/m" rSup { size 8{2} } } {} 1 . 0 atm = 1 . 013 × 10 6 dyne/cm 2 size 12{1 "." 0`"atm"=1 "." "013" times "10" rSup { size 8{6} } `"dyne/cm" rSup { size 8{2} } } {}
1 . 0 kg/cm 2 = 9 . 8 × 10 4 N/m 2 size 12{1 "." 0`"kg/cm" rSup { size 8{2} } =9 "." 8 times "10" rSup { size 8{4} } `"N/m" rSup { size 8{2} } } {} 1 . 0 atm = 1 . 013 kg/cm 2 size 12{1 "." 0`"atm"=1 "." "013"`"kg/cm" rSup { size 8{2} } } {}
1 . 0 lb/in . 2 = 6 . 90 × 10 3 N/m 2 size 12{1 "." 0`"lb/in" "." rSup { size 8{2} } =6 "." "90" times "10" rSup { size 8{3} } `"N/m" rSup { size 8{2} } } {} 1 . 0 atm = 14 . 7 lb/in . 2 size 12{1 "." 0`"atm"="14" "." 7`"lb/in" "." rSup { size 8{2} } } {}
1.0 mm Hg = 133 N/m 2 size 12{1 "." 0`"mm"`"Hg"="133"`"N/m" rSup { size 8{2} } } {} 1 . 0 atm = 760 mm Hg size 12{1 "." 0`"atm"="760"`"mm"`"Hg"} {}
1 . 0 cm Hg = 1 . 33 × 10 3 N/m 2 size 12{1 "." 0`"cm"`"Hg"=1 "." "33" times "10" rSup { size 8{3} } `"N/m" rSup { size 8{2} } } {} 1 . 0 atm = 76 . 0 cm Hg size 12{1 "." 0`"atm"="76" "." 0`"cm"`"Hg"} {}
1 . 0 cm water = 98 . 1 N/m 2 size 12{1 "." 0`"cm"`"water"="98" "." 1`"N/m" rSup { size 8{2} } } {} 1 . 0 atm = 1 . 03 × 10 3 cm water size 12{1 "." 0`"atm"=1 "." "03" times "10" rSup { size 8{3} } `"cm"`"water"} {}
1.0 bar = 1 . 000 × 10 5 N/m 2 size 12{1 "." 0`"bar"=1 "." "000" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } } {} 1 . 0 atm = 1.013 bar size 12{1 "." 0`"atm"=1 "." "013"`"bar"} {}
1.0 millibar = 1 . 000 × 10 2 N/m 2 size 12{1 "." 0`"millibar"=1 "." "000" times "10" rSup { size 8{2} } `"N/m" rSup { size 8{2} } } {} 1.0 atm = 1013 millibar

Section summary

  • Gauge pressure is the pressure relative to atmospheric pressure.
  • Absolute pressure is the sum of gauge pressure and atmospheric pressure.
  • Aneroid gauge measures pressure using a bellows-and-spring arrangement connected to the pointer of a calibrated scale.
  • Open-tube manometers have U-shaped tubes and one end is always open. It is used to measure pressure.
  • A mercury barometer is a device that measures atmospheric pressure.

Conceptual questions

Explain why the fluid reaches equal levels on either side of a manometer if both sides are open to the atmosphere, even if the tubes are of different diameters.

Got questions? Get instant answers now!

[link] shows how a common measurement of arterial blood pressure is made. Is there any effect on the measured pressure if the manometer is lowered? What is the effect of raising the arm above the shoulder? What is the effect of placing the cuff on the upper leg with the person standing? Explain your answers in terms of pressure created by the weight of a fluid.

Got questions? Get instant answers now!

Considering the magnitude of typical arterial blood pressures, why are mercury rather than water manometers used for these measurements?

Got questions? Get instant answers now!

Problems&Exercises

Find the gauge and absolute pressures in the balloon and peanut jar shown in [link] , assuming the manometer connected to the balloon uses water whereas the manometer connected to the jar contains mercury. Express in units of centimeters of water for the balloon and millimeters of mercury for the jar, taking h = 0 . 0500 m size 12{h=0 "." "0500"`m} {} for each.

Balloon:

P g = 5.00 cm H 2 O, P abs = 1.035 × 10 3 cm H 2 O. alignl { stack { size 12{P rSub { size 8{g} } =5 "." "00"`"cm"`H rSub { size 8{2} } "O,"} {} #P rSub { size 8{"abs"} } =1 "." "035" times "10" rSup { size 8{3} } `"cm"`H rSub { size 8{2} } O "." {} } } {}

Jar:

P g = 50.0 mm Hg , P abs = 710 mm Hg. alignl { stack { size 12{P rSub { size 8{g} } = - "50" "." 0`"mm"`"Hg,"} {} #P rSub { size 8{"abs"} } ="710"`"mm"`"Hg" "." {} } } {}

Got questions? Get instant answers now!

(a) Convert normal blood pressure readings of 120 over 80 mm Hg to newtons per meter squared using the relationship for pressure due to the weight of a fluid ( P = hρg ) size 12{ \( P=hρg \) } {} rather than a conversion factor. (b) Discuss why blood pressures for an infant could be smaller than those for an adult. Specifically, consider the smaller height to which blood must be pumped.

Got questions? Get instant answers now!

How tall must a water-filled manometer be to measure blood pressures as high as 300 mm Hg?

4.08 m

Got questions? Get instant answers now!

Pressure cookers have been around for more than 300 years, although their use has strongly declined in recent years (early models had a nasty habit of exploding). How much force must the latches holding the lid onto a pressure cooker be able to withstand if the circular lid is 25.0 cm size 12{"25" "." 0`"cm"} {} in diameter and the gauge pressure inside is 300 atm? Neglect the weight of the lid.

Got questions? Get instant answers now!

Suppose you measure a standing person’s blood pressure by placing the cuff on his leg 0.500 m below the heart. Calculate the pressure you would observe (in units of mm Hg) if the pressure at the heart were 120 over 80 mm Hg. Assume that there is no loss of pressure due to resistance in the circulatory system (a reasonable assumption, since major arteries are large).

Δ P = 38.7 mm Hg, Leg blood pressure = 159 119 . alignl { stack { size 12{ΔP="38" "." 7`"mm"`"Hg,"} {} #size 12{"Leg"`"blood"`"pressure"= { {"159"} over {"119"} } "." } {} } } {}

Got questions? Get instant answers now!

A submarine is stranded on the bottom of the ocean with its hatch 25.0 m below the surface. Calculate the force needed to open the hatch from the inside, given it is circular and 0.450 m in diameter. Air pressure inside the submarine is 1.00 atm.

Got questions? Get instant answers now!

Assuming bicycle tires are perfectly flexible and support the weight of bicycle and rider by pressure alone, calculate the total area of the tires in contact with the ground. The bicycle plus rider has a mass of 80.0 kg, and the gauge pressure in the tires is 3 . 50 × 10 5 Pa size 12{3 "." "50" times "10" rSup { size 8{5} } `"Pa"} {} .

22 . 4 cm 2 size 12{"22" "." 4`"cm" rSup { size 8{2} } } {}

Got questions? Get instant answers now!

Questions & Answers

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
Collins Reply
What is thermal heat all about
Abel Reply
why uniform circular motion is called a periodic motion?.
Boniface Reply
when a train start from A & it returns at same station A . what is its acceleration?
Mwdan Reply
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
Worku Reply
what are the types of radioactivity
Worku
what is static friction
Golu Reply
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
Muhammed Reply
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
Eboh Reply
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
Subi Reply
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
yusuf Reply
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
syed Reply
definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
please send the answer
Boniface
the range of objects and phenomena studied in physics is
Bethel Reply
I don't know please give the answer
Boniface
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask