<< Chapter < Page Chapter >> Page >
Diagram of weight w attached to each of three guitar strings of initial length L zero hanging vertically from a ceiling. The weight pulls down on the strings with force w. The ceiling pulls up on the strings with force w. The first string of thin nylon has a deformation of delta L due to the force of the weight pulling down. The middle string of thicker nylon has a smaller deformation. The third string of thin steel has the smallest deformation.
The same force, in this case a weight ( w size 12{w} {} ), applied to three different guitar strings of identical length produces the three different deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon, and the one on the right is steel.

Stretch yourself a little

How would you go about measuring the proportionality constant k size 12{k} {} of a rubber band? If a rubber band stretched 3 cm when a 100-g mass was attached to it, then how much would it stretch if two similar rubber bands were attached to the same mass—even if put together in parallel or alternatively if tied together in series?

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear (stress), and changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in length—tension and compression: elastic modulus

A change in length Δ L size 12{ΔL} {} is produced when a force is applied to a wire or rod parallel to its length L 0 size 12{L rSub { size 8{0} } } {} , either stretching it (a tension) or compressing it. (See [link] .)

Figure a is a cylindrical rod standing on its end with a height of L sub zero. Two vectors labeled F extend away from each end. A dotted outline indicates that the rod is stretched by a length of delta L. Figure b is a similar rod of identical height L sub zero, but two vectors labeled F exert a force toward the ends of the rod. A dotted line indicates that the rod is compressed by a length of delta L.
(a) Tension. The rod is stretched a length Δ L size 12{ΔL} {} when a force is applied parallel to its length. (b) Compression. The same rod is compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform materials, Δ L size 12{ΔL} {} is approximately the same for the same magnitude of tension or compression. For larger deformations, the cross-sectional area changes as the rod is compressed or stretched.

Experiments have shown that the change in length ( Δ L size 12{ΔL} {} ) depends on only a few variables. As already noted, Δ L size 12{ΔL} {} is proportional to the force F size 12{F} {} and depends on the substance from which the object is made. Additionally, the change in length is proportional to the original length L 0 size 12{L rSub { size 8{0} } } {} and inversely proportional to the cross-sectional area of the wire or rod. For example, a long guitar string will stretch more than a short one, and a thick string will stretch less than a thin one. We can combine all these factors into one equation for Δ L size 12{ΔL} {} :

Δ L = 1 Y F A L 0 , size 12{ΔL= { {1} over {Y} } { {F} over {A} } L rSub { size 8{0} } } {}

where Δ L size 12{ΔL} {} is the change in length, F size 12{F} {} the applied force, Y size 12{Y} {} is a factor, called the elastic modulus or Young’s modulus, that depends on the substance, A size 12{A} {} is the cross-sectional area, and L 0 size 12{L rSub { size 8{0} } } {} is the original length. [link] lists values of Y size 12{A} {} for several materials—those with a large Y size 12{A} {} are said to have a large tensile stifness because they deform less for a given tension or compression.

Elastic moduli Approximate and average values. Young’s moduli Y size 12{Y} {} for tension and compression sometimes differ but are averaged here. Bone has significantly different Young’s moduli for tension and compression.
Material Young’s modulus (tension–compression) Y ( 10 9 N/m 2 ) Shear modulus S ( 10 9 N/m 2 ) Bulk modulus B ( 10 9 N/m 2 )
Aluminum 70 25 75
Bone – tension 16 80 8
Bone – compression 9
Brass 90 35 75
Brick 15
Concrete 20
Glass 70 20 30
Granite 45 20 45
Hair (human) 10
Hardwood 15 10
Iron, cast 100 40 90
Lead 16 5 50
Marble 60 20 70
Nylon 5
Polystyrene 3
Silk 6
Spider thread 3
Steel 210 80 130
Tendon 1
Acetone 0.7
Ethanol 0.9
Glycerin 4.5
Mercury 25
Water 2.2

Young’s moduli are not listed for liquids and gases in [link] because they cannot be stretched or compressed in only one direction. Note that there is an assumption that the object does not accelerate, so that there are actually two applied forces of magnitude F size 12{F} {} acting in opposite directions. For example, the strings in [link] are being pulled down by a force of magnitude w size 12{w} {} and held up by the ceiling, which also exerts a force of magnitude w size 12{w} {} .

Questions & Answers

What is the difference between a principle and a law
the law is universally proved. The principal depends on certain conditions.
Dr
state Faraday first law
aliyu Reply
it states that mass of an element deposited during electrolysis is directly proportional to the quantity of electricity discharge
Olamide
what does the speedometer of a car measure ?
Jyoti Reply
Car speedometer measures the rate of change of distance per unit time.
Moses
describe how a Michelson interferometer can be used to measure the index of refraction of a gas (including air)
WILLIAM Reply
using the law of reflection explain how powder takes the shine off a person's nose. what is the name of the optical effect?
WILLIAM
is higher resolution of microscope using red or blue light?.explain
WILLIAM
what is dimensional consistent
Mohammed
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities and units of measure and tracking these dimensions as calculations or comparisons are performed
syed
can sound wave in air be polarized?
WILLIAM Reply
Unlike transverse waves such as electromagnetic waves, longitudinal waves such as sound waves cannot be polarized. ... Since sound waves vibrate along their direction of propagation, they cannot be polarized
Astronomy
A proton moves at 7.50×107m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.800 m. What is the field strength?
Celedonio Reply
derived dimenionsal formula
Ajak Reply
what is the difference between mass and weight
Isru Reply
assume that a boy was born when his father was eighteen years.if the boy is thirteen years old now, how is his father in
Isru
31yrs
Olamide
what is head-on collision
Javaid Reply
what is airflow
Godswill Reply
derivative of first differential equation
Haruna Reply
why static friction is greater than Kinetic friction
Ali Reply
draw magnetic field pattern for two wire carrying current in the same direction
Ven Reply
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
nkombo Reply
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
what is energy
Yusuf
How electric lines and equipotential surface are mutually perpendicular?
Abid Reply
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
MAHADEV
sorry..E and R are non zero...
MAHADEV
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask