<< Chapter < Page Chapter >> Page >
Diagram of weight w attached to each of three guitar strings of initial length L zero hanging vertically from a ceiling. The weight pulls down on the strings with force w. The ceiling pulls up on the strings with force w. The first string of thin nylon has a deformation of delta L due to the force of the weight pulling down. The middle string of thicker nylon has a smaller deformation. The third string of thin steel has the smallest deformation.
The same force, in this case a weight ( w size 12{w} {} ), applied to three different guitar strings of identical length produces the three different deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon, and the one on the right is steel.

Stretch yourself a little

How would you go about measuring the proportionality constant k size 12{k} {} of a rubber band? If a rubber band stretched 3 cm when a 100-g mass was attached to it, then how much would it stretch if two similar rubber bands were attached to the same mass—even if put together in parallel or alternatively if tied together in series?

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear (stress), and changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in length—tension and compression: elastic modulus

A change in length Δ L size 12{ΔL} {} is produced when a force is applied to a wire or rod parallel to its length L 0 size 12{L rSub { size 8{0} } } {} , either stretching it (a tension) or compressing it. (See [link] .)

Figure a is a cylindrical rod standing on its end with a height of L sub zero. Two vectors labeled F extend away from each end. A dotted outline indicates that the rod is stretched by a length of delta L. Figure b is a similar rod of identical height L sub zero, but two vectors labeled F exert a force toward the ends of the rod. A dotted line indicates that the rod is compressed by a length of delta L.
(a) Tension. The rod is stretched a length Δ L size 12{ΔL} {} when a force is applied parallel to its length. (b) Compression. The same rod is compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform materials, Δ L size 12{ΔL} {} is approximately the same for the same magnitude of tension or compression. For larger deformations, the cross-sectional area changes as the rod is compressed or stretched.

Experiments have shown that the change in length ( Δ L size 12{ΔL} {} ) depends on only a few variables. As already noted, Δ L size 12{ΔL} {} is proportional to the force F size 12{F} {} and depends on the substance from which the object is made. Additionally, the change in length is proportional to the original length L 0 size 12{L rSub { size 8{0} } } {} and inversely proportional to the cross-sectional area of the wire or rod. For example, a long guitar string will stretch more than a short one, and a thick string will stretch less than a thin one. We can combine all these factors into one equation for Δ L size 12{ΔL} {} :

Δ L = 1 Y F A L 0 , size 12{ΔL= { {1} over {Y} } { {F} over {A} } L rSub { size 8{0} } } {}

where Δ L size 12{ΔL} {} is the change in length, F size 12{F} {} the applied force, Y size 12{Y} {} is a factor, called the elastic modulus or Young’s modulus, that depends on the substance, A size 12{A} {} is the cross-sectional area, and L 0 size 12{L rSub { size 8{0} } } {} is the original length. [link] lists values of Y size 12{A} {} for several materials—those with a large Y size 12{A} {} are said to have a large tensile stifness because they deform less for a given tension or compression.

Elastic moduli Approximate and average values. Young’s moduli Y size 12{Y} {} for tension and compression sometimes differ but are averaged here. Bone has significantly different Young’s moduli for tension and compression.
Material Young’s modulus (tension–compression) Y ( 10 9 N/m 2 ) Shear modulus S ( 10 9 N/m 2 ) Bulk modulus B ( 10 9 N/m 2 )
Aluminum 70 25 75
Bone – tension 16 80 8
Bone – compression 9
Brass 90 35 75
Brick 15
Concrete 20
Glass 70 20 30
Granite 45 20 45
Hair (human) 10
Hardwood 15 10
Iron, cast 100 40 90
Lead 16 5 50
Marble 60 20 70
Nylon 5
Polystyrene 3
Silk 6
Spider thread 3
Steel 210 80 130
Tendon 1
Acetone 0.7
Ethanol 0.9
Glycerin 4.5
Mercury 25
Water 2.2

Young’s moduli are not listed for liquids and gases in [link] because they cannot be stretched or compressed in only one direction. Note that there is an assumption that the object does not accelerate, so that there are actually two applied forces of magnitude F size 12{F} {} acting in opposite directions. For example, the strings in [link] are being pulled down by a force of magnitude w size 12{w} {} and held up by the ceiling, which also exerts a force of magnitude w size 12{w} {} .

Questions & Answers

Pls guys am having problem on these topics: latent heat of fusion, specific heat capacity and the sub topics under them.Pls who can help?
hamidat Reply
Thanks George,I appreciate.
this will lead you rightly of the formula to use
Most especially it is the calculatory aspects that is giving me issue, but with these new strength that you guys have given me,I will put in my best to understand it again.
you can bring up a question and let's see what we can do to it
the distance between two suasive crests of water wave traveling of 3.6ms1 is 0.45m calculate the frequency of the wave
Idris Reply
v=f×lemda where the velocity is given and lends also given so simply u can calculate the frequency
You are right my brother, make frequency the subject of formula and equate the values of velocity and lamda into the equation, that all.
lExplain what happens to the energy carried by light that it is dimmed by passing it through two crossed polarizing filters.
Christoper Reply
When light is reflected at Brewster's angle from a smooth surface, it is 100% polarizedparallel to the surface. Part of the light will be refracted into the surface.
What is specific heat capacity?
hamidat Reply
Specific heat capacity is the amount of heat required to raise the temperature of one (Kg) of a substance through one Kelvin
formula for measuring Joules
Rowshan Reply
I don't understand, do you mean the S.I unit of work and energy?
what are the effects of electric current
What limits the Magnification of an optical instrument?
Naeem Reply
Lithography is 2 micron
what is expression for energy possessed by water ripple
Prabesh Reply
what is hydrolic press
Mark Reply
An hydraulic press is a type of machine that is operated by different pressure of water on pistons.
what is dimensional unite of mah
Patrock Reply
i want jamb related question on this asap🙏
sharon Reply
What is Boyles law
Pascal Reply
it can simple defined as constant temperature
Boyles law states that the volume of a fixed amount of a gas is inversely proportional to the pressure acting on in provided that the temperature is constant.that is V=k(1/p) or V=k/p
what is motion
Mua Reply
getting notifications for a dictionary word, smh
what is escape velocity
Shuaibu Reply
the minimum thrust that an object must have in oder yo escape the gravitational pull
what is a dimer
what is a atom
how to calculate tension
Deena Reply
what are the laws of motion
Practice Key Terms 6

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?