# 13.4 Kinetic theory: atomic and molecular explanation of pressure  (Page 2/5)

 Page 2 / 5

We can get the average kinetic energy of a molecule, $\frac{1}{2}{\text{mv}}^{2}$ , from the left-hand side of the equation by canceling $N$ and multiplying by 3/2. This calculation produces the result that the average kinetic energy of a molecule is directly related to absolute temperature.

$\overline{\text{KE}}=\frac{1}{2}m\overline{{v}^{2}}=\frac{3}{2}\text{kT}$

The average translational kinetic energy of a molecule, $\overline{\text{KE}}$ , is called thermal energy     . The equation $\overline{\text{KE}}=\frac{1}{2}m\overline{{v}^{2}}=\frac{3}{2}\text{kT}$ is a molecular interpretation of temperature, and it has been found to be valid for gases and reasonably accurate in liquids and solids. It is another definition of temperature based on an expression of the molecular energy.

It is sometimes useful to rearrange $\overline{\text{KE}}=\frac{1}{2}m\overline{{v}^{2}}=\frac{3}{2}\text{kT}$ , and solve for the average speed of molecules in a gas in terms of temperature,

$\sqrt{\overline{{v}^{2}}}={v}_{\text{rms}}=\sqrt{\frac{3\text{kT}}{m}},$

where ${v}_{\text{rms}}$ stands for root-mean-square (rms) speed.

## Calculating kinetic energy and speed of a gas molecule

(a) What is the average kinetic energy of a gas molecule at $\text{20}\text{.}0\text{º}\text{C}$ (room temperature)? (b) Find the rms speed of a nitrogen molecule $\left({\text{N}}_{2}\right)$ at this temperature.

Strategy for (a)

The known in the equation for the average kinetic energy is the temperature.

$\overline{\text{KE}}=\frac{1}{2}m\overline{{v}^{2}}=\frac{3}{2}\text{kT}$

Before substituting values into this equation, we must convert the given temperature to kelvins. This conversion gives $T=\left(\text{20}\text{.}0+\text{273}\right)\phantom{\rule{0.25em}{0ex}}\text{K = 293}\phantom{\rule{0.25em}{0ex}}\text{K}.$

Solution for (a)

The temperature alone is sufficient to find the average translational kinetic energy. Substituting the temperature into the translational kinetic energy equation gives

$\overline{\text{KE}}=\frac{3}{2}\text{kT}=\frac{3}{2}\left(1\text{.}\text{38}×{\text{10}}^{-\text{23}}\phantom{\rule{0.25em}{0ex}}\text{J/K}\right)\left(\text{293}\phantom{\rule{0.25em}{0ex}}\text{K}\right)=6\text{.}\text{07}×{\text{10}}^{-\text{21}}\phantom{\rule{0.25em}{0ex}}\text{J}\text{.}$

Strategy for (b)

Finding the rms speed of a nitrogen molecule involves a straightforward calculation using the equation

$\sqrt{\overline{{v}^{2}}}={v}_{\text{rms}}=\sqrt{\frac{3\text{kT}}{m}},$

but we must first find the mass of a nitrogen molecule. Using the molecular mass of nitrogen ${\text{N}}_{2}$ from the periodic table,

$m=\frac{2\left(\text{14}\text{.}\text{0067}\right)×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}\text{kg/mol}}{6\text{.}\text{02}×{\text{10}}^{\text{23}}\phantom{\rule{0.25em}{0ex}}{\text{mol}}^{-1}}=4\text{.}\text{65}×{\text{10}}^{-\text{26}}\phantom{\rule{0.25em}{0ex}}\text{kg}\text{.}$

Solution for (b)

Substituting this mass and the value for $k$ into the equation for ${v}_{\text{rms}}$ yields

${v}_{\text{rms}}=\sqrt{\frac{3\text{kT}}{m}}=\sqrt{\frac{3\left(1\text{.}\text{38}×{\text{10}}^{–\text{23}}\phantom{\rule{0.25em}{0ex}}\text{J/K}\right)\left(\text{293 K}\right)}{4\text{.}\text{65}×{\text{10}}^{\text{–26}}\phantom{\rule{0.25em}{0ex}}\text{kg}}}=\text{511}\phantom{\rule{0.25em}{0ex}}\text{m/s}\text{.}$

Discussion

Note that the average kinetic energy of the molecule is independent of the type of molecule. The average translational kinetic energy depends only on absolute temperature. The kinetic energy is very small compared to macroscopic energies, so that we do not feel when an air molecule is hitting our skin. The rms velocity of the nitrogen molecule is surprisingly large. These large molecular velocities do not yield macroscopic movement of air, since the molecules move in all directions with equal likelihood. The mean free path (the distance a molecule can move on average between collisions) of molecules in air is very small, and so the molecules move rapidly but do not get very far in a second. The high value for rms speed is reflected in the speed of sound, however, which is about 340 m/s at room temperature. The faster the rms speed of air molecules, the faster that sound vibrations can be transferred through the air. The speed of sound increases with temperature and is greater in gases with small molecular masses, such as helium. (See [link] .)

write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
how does a model differ from a theory
what is vector quantity
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
what's electromagnetic induction
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
yes it was an assignment question "^"represent raise to power pls
Gabriel
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
method of polarization
Ajayi
What is atomic number?
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
why the satellite does not drop to the earth explain
what is a matter
Yinka
what is matter
Yinka
what is matter
Yinka
what is a matter
Yinka
I want the nuclear physics conversation
Mohamed
because space is a vacuum and anything outside the earth 🌎 can not come back without an act of force applied to it to leave the vacuum and fall down to the earth with a maximum force length of 30kcm per second
Clara