<< Chapter < Page Chapter >> Page >

We can get the average kinetic energy of a molecule, 1 2 mv 2 size 12{ { { size 8{1} } over { size 8{2} } } ital "mv" rSup { size 8{2} } } {} , from the left-hand side of the equation by canceling N size 12{N} {} and multiplying by 3/2. This calculation produces the result that the average kinetic energy of a molecule is directly related to absolute temperature.

KE ¯ = 1 2 m v 2 ¯ = 3 2 kT size 12{ {overline {"KE"}} = { {1} over {2} } m {overline {v rSup { size 8{2} } }} = { {3} over {2} } ital "kT"} {}

The average translational kinetic energy of a molecule, KE ¯ size 12{ {overline {"KE"}} } {} , is called thermal energy     . The equation KE ¯ = 1 2 m v 2 ¯ = 3 2 kT size 12{ {overline { size 11{"KE"}}} = { {1} over {2} } m {overline { size 11{v rSup { size 8{2} } }}} = { {3} over {2} } ital "kT"} {} is a molecular interpretation of temperature, and it has been found to be valid for gases and reasonably accurate in liquids and solids. It is another definition of temperature based on an expression of the molecular energy.

It is sometimes useful to rearrange KE ¯ = 1 2 m v 2 ¯ = 3 2 kT size 12{ {overline { size 11{"KE"}}} = { {1} over {2} } m {overline { size 11{v rSup { size 8{2} } }}} = { {3} over {2} } ital "kT"} {} , and solve for the average speed of molecules in a gas in terms of temperature,

v 2 ¯ = v rms = 3 kT m , size 12{ sqrt { {overline {v rSup { size 8{2} } }} } =v rSub { size 8{"rms"} } = sqrt { { {3 ital "kT"} over {m} } } ,} {}

where v rms size 12{v rSub { size 8{"rms"} } } {} stands for root-mean-square (rms) speed.

Calculating kinetic energy and speed of a gas molecule

(a) What is the average kinetic energy of a gas molecule at 20 . 0 º C size 12{"20" "." 0°C} {} (room temperature)? (b) Find the rms speed of a nitrogen molecule ( N 2 ) size 12{ \( N rSub { size 8{2} } \) } {} at this temperature.

Strategy for (a)

The known in the equation for the average kinetic energy is the temperature.

KE ¯ = 1 2 m v 2 ¯ = 3 2 kT size 12{ {overline {"KE"}} = { {1} over {2} } m {overline {v rSup { size 8{2} } }} = { {3} over {2} } ital "kT"} {}

Before substituting values into this equation, we must convert the given temperature to kelvins. This conversion gives T = ( 20 . 0 + 273 ) K = 293 K . size 12{T= \( "20" "." 0+"273" \) " K=293 K" "." } {}

Solution for (a)

The temperature alone is sufficient to find the average translational kinetic energy. Substituting the temperature into the translational kinetic energy equation gives

KE ¯ = 3 2 kT = 3 2 1 . 38 × 10 23 J/K 293 K = 6 . 07 × 10 21 J . size 12{ {overline {"KE"}} = { {3} over {2} } ital "kT"= { {3} over {2} } left (1 "." "38" times "10" rSup { size 8{ - "23"} } " J/K" right ) left ("293"" K" right )=6 "." "07" times "10" rSup { size 8{ - "21"} } `J "." } {}

Strategy for (b)

Finding the rms speed of a nitrogen molecule involves a straightforward calculation using the equation

v 2 ¯ = v rms = 3 kT m , size 12{ sqrt { {overline {v rSup { size 8{2} } }} } =v rSub { size 8{"rms"} } = sqrt { { {3 ital "kT"} over {m} } } ,} {}

but we must first find the mass of a nitrogen molecule. Using the molecular mass of nitrogen N 2 size 12{N rSub { size 8{2} } } {} from the periodic table,

m = 2 14 . 0067 × 10 3 kg/mol 6 . 02 × 10 23 mol 1 = 4 . 65 × 10 26 kg . size 12{m= { {2 left ("14" "." "0067" right ) times "10" rSup { size 8{ - 3} } `"kg/mol"} over {6 "." "02" times "10" rSup { size 8{"23"} } `"mol" rSup { size 8{ - 1} } } } =4 "." "65" times "10" rSup { size 8{ - "26"} } `"kg" "." } {}

Solution for (b)

Substituting this mass and the value for k size 12{k} {} into the equation for v rms size 12{v rSub { size 8{"rms"} } } {} yields

v rms = 3 kT m = 3 1 . 38 × 10 23 J/K 293 K 4 . 65 × 10 –26 kg = 511 m/s . size 12{v rSub { size 8{"rms"} } = sqrt { { {3 ital "kT"} over {m} } } = sqrt { { {3 left (1 "." "38" times "10" rSup { size 8{–"23"} } " J/K" right ) left ("293 K" right )} over {4 "." "65" times "10" rSup { size 8{"–26"} } " kg"} } } ="511"" m/s" "." } {}

Discussion

Note that the average kinetic energy of the molecule is independent of the type of molecule. The average translational kinetic energy depends only on absolute temperature. The kinetic energy is very small compared to macroscopic energies, so that we do not feel when an air molecule is hitting our skin. The rms velocity of the nitrogen molecule is surprisingly large. These large molecular velocities do not yield macroscopic movement of air, since the molecules move in all directions with equal likelihood. The mean free path (the distance a molecule can move on average between collisions) of molecules in air is very small, and so the molecules move rapidly but do not get very far in a second. The high value for rms speed is reflected in the speed of sound, however, which is about 340 m/s at room temperature. The faster the rms speed of air molecules, the faster that sound vibrations can be transferred through the air. The speed of sound increases with temperature and is greater in gases with small molecular masses, such as helium. (See [link] .)

In part a of the figure, circles represent molecules distributed in a gas. Attached to each circle is a vector representing velocity. The circles have a random arrangement, while the vector arrows have random orientations and lengths. In part b of the figure, an arc represents a sound wave as it passes through a gas. The velocity of each molecule along the peak of the wave is roughly oriented parallel to the transmission direction of the wave.
(a) There are many molecules moving so fast in an ordinary gas that they collide a billion times every second. (b) Individual molecules do not move very far in a small amount of time, but disturbances like sound waves are transmitted at speeds related to the molecular speeds.

Questions & Answers

what's acceleration
Joshua Reply
The change in position of an object with respect to time
Mfizi
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Seema
Which eye defect is corrected by a lens having different curvatures in two perpendicular directions?
Valentina Reply
acute astigmatism?
the difference between virtual work and virtual displacement
Noman Reply
How do you calculate uncertainties
Ancilla Reply
What is Elasticity
Salim Reply
using a micro-screw gauge,the thickness of a piece of a A4 white paper is measured to be 0.5+or-0.05 mm. If the length of the A4 paper is 26+or-0.2 cm, determine the volume of the A4 paper in: a). Cubic centimeters b). Cubic meters
Ancilla Reply
what is module
Alex Reply
why it is possible for an object(man) to stay on air without falling down?
akande Reply
its impossible, what do you mean exactly?
Ryan
Exactly
Emmanuella
it's impossible
Your
Why is it not possible to stand in air?
bikko
the air molecules are very light enough to oppose the gravitational pull of the earth on the man..... hence, freefall occurs
Arzail
what is physics
Joshua Reply
no life without physics ....that should tell you something
Exactly
Emmanuella
😎👍
E=MC^2
study of matter and energy and an inter-relation between them.
Minahil
that's how the mass and energy are related in stationery frame
Arzail
Ketucky tepung 10m
firdaus
Treeskin, 6m Cloud gam water 2m Cloud gam white 2m And buur
firdaus
Like dont have but have
firdaus
Two in one
firdaus
Okay
firdaus
DNA card
firdaus
hey am new over hear
Shiwani
War right? My impesilyty again. Don't have INSURAN for me
firdaus
PUSH
firdaus
I give
firdaus
0kay
firdaus
Hear from long
firdaus
Hehehe
firdaus
All physics... Hahahaha
firdaus
Tree skin and two cloud have tokside maybe
firdaus
Sold thing
firdaus
PUSH FIRST. HAHAHAAHA
firdaus
thanks
firdaus
Kinetic energy is the energy due to montion of waves,electrons,atoms, molecule,substances an object s.
Emmanuella
Opjective 0
firdaus
Atom nber 0
firdaus
SOME N
firdaus
10.000m permonth. U use momentom with me
firdaus
hi
Hilal
plz anyone can tell what is meteor and why meteor fall in night? can meteor fall in the day
Hilal
meteor are the glowy (i.e. heated when the enter into our atmosphere) parts of meteoroids. now, meteoroids are the debris resulting from the collision of asteroids or comets. yes, it occurs in daytime too, but due to the daylight, we cant observe it as clearly as in night
Arzail
thank's
Hilal
hello guys
Waka
wich method we use to find the potential on a grounded sphere
Noman
with out a physics the life is nothing to see
Yilma Reply
What do you want to talk about😋😋
Emmanuella
the study of all the natural events occuring around us..... this is Physics (until those events obey the laws of physics)
Arzail
Conservation of energy😰
Emmanuella
yeah, that too
Arzail
Energy, it always remains there in a physical system. it can only take the form either in motion (kinetic energy) or in rest (potential energy)
Arzail
In nature organisms feed on one another in an orderly way.
Emmanuella
that describes the food chain, in which we humans are at the top
Arzail
The energy that came initially from the sun 🌞is converted into a form in which it can be stored in green plant.
Emmanuella
Therefore, there is conservation of energy.
Emmanuella
DNA CARD
firdaus
"card"
firdaus
Darag
firdaus
What is x-ray
Daniel Reply
x-rays are electromagnetic Ray's produced when electrons with very high acceleration is brought to a stop by a target metal..
Felix
DNA CARD. DNA BLOOD(DARAH)
firdaus
@firdaus What is this DNA card? can I get to know?
Arzail
determine how much less the mass of lithium with mass number of 7 and proton of 3 nucleus is compared to that of its constituents.the mass of neutral Li 6.015123 u, calculate the total binding energy and the binding energy per nucleon
Barakat Reply
Try do car normally don't have oil. Like closing at all
firdaus
At
firdaus
Blosing design
firdaus
At-->automatic
firdaus
Blood DNA
firdaus
Practice Key Terms 1

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask