<< Chapter < Page Chapter >> Page >
Three incident rays, 1, 2, and 3, falling on a concave mirror. Ray 1 falls parallel, ray 2 falls making an angle with the axis and ray 3 passes through focal point F. These rays after reflection converge at a point below the axis. The image is inverted and enlarged and falls below the axis on the same side as the object. Here, the distance from the center of the mirror to F is the focal distance small f, distances of the object and the image from the mirror are d sub o and d sub I, respectively. The heights of the object and the image are h sub o and h sub I, respectively.
A case 1 image for a mirror. An object is farther from the converging mirror than its focal length. Rays from a common point on the object are traced using the rules in the text. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 goes through the focal point on the way toward the mirror. All three rays cross at the same point after being reflected, locating the inverted real image. Although three rays are shown, only two of the three are needed to locate the image and determine its height.

A concave reflector

Electric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR follows the same law of reflection as visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image of the coils 3.00 m away from the mirror, where are the coils?

Strategy and Concept

We are given that the concave mirror projects a real image of the coils at an image distance d i = 3.00 m . The coils are the object, and we are asked to find their location—that is, to find the object distance d o . We are also given the radius of curvature of the mirror, so that its focal length is f = R / 2 = 25.0 cm (positive since the mirror is concave or converging). Assuming the mirror is small compared with its radius of curvature, we can use the thin lens equations, to solve this problem.

Solution

Since d i size 12{d rSub { size 8{i} } } {} and f size 12{f} {} are known, thin lens equation can be used to find d o size 12{d rSub { size 8{o} } } {} :

1 d o + 1 d i = 1 f . size 12{ { {1} over {d rSub { size 8{o} } } } + { {1} over {d rSub { size 8{i} } } } = { {1} over {f} } } {}

Rearranging to isolate d o size 12{d rSub { size 8{o} } } {} gives

1 d o = 1 f 1 d i . size 12{ { {1} over {d rSub { size 8{o} } } } = { {1} over {f} } - { {1} over {d rSub { size 8{i} } } } } {}

Entering known quantities gives a value for 1/ d o size 12{d rSub { size 8{o} } } {} :

1 d o = 1 0 . 250 m 1 3 . 00 m = 3 . 667 m . size 12{ { {1} over {d rSub { size 8{o} } } } = { {1} over {0 "." "250"" m"} } - { {1} over {3 "." "00"" m"} } = { {3 "." "667"} over {m} } } {}

This must be inverted to find d o size 12{d rSub { size 8{o} } } {} :

d o = 1 m 3 . 667 = 27 . 3 cm. size 12{d rSub { size 8{o} } = { {"1 m"} over {3 "." "667"} } ="27" "." 3" cm"} {}

Discussion

Note that the object (the filament) is farther from the mirror than the mirror’s focal length. This is a case 1 image ( d o > f and f positive), consistent with the fact that a real image is formed. You will get the most concentrated thermal energy directly in front of the mirror and 3.00 m away from it. Generally, this is not desirable, since it could cause burns. Usually, you want the rays to emerge parallel, and this is accomplished by having the filament at the focal point of the mirror.

Note that the filament here is not much farther from the mirror than its focal length and that the image produced is considerably farther away. This is exactly analogous to a slide projector. Placing a slide only slightly farther away from the projector lens than its focal length produces an image significantly farther away. As the object gets closer to the focal distance, the image gets farther away. In fact, as the object distance approaches the focal length, the image distance approaches infinity and the rays are sent out parallel to one another.

Solar electric generating system

One of the solar technologies used today for generating electricity is a device (called a parabolic trough or concentrating collector) that concentrates the sunlight onto a blackened pipe that contains a fluid. This heated fluid is pumped to a heat exchanger, where its heat energy is transferred to another system that is used to generate steam—and so generate electricity through a conventional steam cycle. [link] shows such a working system in southern California. Concave mirrors are used to concentrate the sunlight onto the pipe. The mirror has the approximate shape of a section of a cylinder. For the problem, assume that the mirror is exactly one-quarter of a full cylinder.

Questions & Answers

A soccer player kicked off a ball at velocity of 62 ft/s at angle 45°. A goal keeper is 43 yard away from the direction in which ball kicked off. At what minimum velocity he runs to meet the ball?
Ram Reply
A soccer player kicked off the ball at the velocity of 62 ft/s at 45° with horizontal.A goal keeper is 43 yard away from the ball kicked position.At what minimum velocity he runs to meet the ball?
Ram
what is torque
Deepak Reply
The turning effect of force is called torque.
Uzair
What is the effect of static electricity
Ruth
what there factors affect the surface tension of a liquid
Promise Reply
formula for impedance
muyiwa Reply
ehat is central forces
Nita Reply
what is distance?
Jonathan Reply
What does mean ohms law imply
Victoria Reply
ohms law state that the electricity passing through a metallic conductor is directly proportional to the potential difference across its end
muyiwa
what is matter
folajin Reply
Anything that occupies space
Kevin
Any thing that has weight and occupies space
Victoria
Anything which we can feel by any of our 5 sense organs
Suraj
Right
Roben
thanks
Suraj
what is a sulphate
Alo
any answers
Alo
the time rate of increase in velocity is called
Blessing Reply
acceleration
Emma
What is uniform velocity
Victoria
Greetings,users of that wonderful app.
Frank Reply
how to solve pressure?
Cruz Reply
how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)
Cruz
P=F/A
Mira
can someone derive the formula a little bit deeper?
Bern
what is coplanar force?
OLADITI Reply
forces acting and lying on d same plane
Promise
what is accuracy and precision
Peace Reply
How does a current follow?
Vineeta Reply
follow?
akif
which one dc or ac current.
akif
how does a current following?
Vineeta
?
akif
AC current
Vineeta
AC current follows due to changing electric field and magnetic field.
akif
you guys are just saying follow is flow not follow please
Abubakar
ok bro thanks
akif
flows
Abubakar
but i wanted to understand him/her in his own language
akif
but I think the statement is written in English not any other language
Abubakar
my mean that in which form he/she written this,will understand better in this form, i write.
akif
ok
Abubakar
ok thanks bro. my mistake
Vineeta
u are welcome
Abubakar
what is a semiconductor
Vineeta Reply
substances having lower forbidden gap between valence band and conduction band
akif
what is a conductor?
Vineeta
replace lower by higher only
akif
convert 56°c to kelvin
Abubakar
How does a current follow?
Vineeta
A semiconductor is any material whose conduction lies between that of a conductor and an insulator.
AKOWUAH
Practice Key Terms 3

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask