<< Chapter < Page Chapter >> Page >
  • Describe different simple machines.
  • Calculate the mechanical advantage.

Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a distance through which we apply the force. The word for “machine” comes from the Greek word meaning “to help make things easier.” Levers, gears, pulleys, wedges, and screws are some examples of machines. Energy is still conserved for these devices because a machine cannot do more work than the energy put into it. However, machines can reduce the input force that is needed to perform the job. The ratio of output to input force magnitudes for any simple machine is called its mechanical advantage    (MA).

MA = F o F i size 12{"MA"= { {F rSub { size 8{o} } } over {F rSub { size 8{i} } } } } {}

One of the simplest machines is the lever, which is a rigid bar pivoted at a fixed place called the fulcrum. Torques are involved in levers, since there is rotation about a pivot point. Distances from the physical pivot of the lever are crucial, and we can obtain a useful expression for the MA in terms of these distances.

There is a nail in a wooden plank. A nail puller is being used to pull the nail out of the plank. A hand is applying force F sub I downward on the handle of the nail puller. The top of the nail exerts a force F sub N downward on the puller. At the point where the nail puller touches the plank, the reaction of the surface force N is applied. At the top of the figure, a free body diagram is shown.
A nail puller is a lever with a large mechanical advantage. The external forces on the nail puller are represented by solid arrows. The force that the nail puller applies to the nail ( F o size 12{F rSub { size 8{o} } } {} ) is not a force on the nail puller. The reaction force the nail exerts back on the puller ( F n size 12{F rSub { size 8{n} } } {} ) is an external force and is equal and opposite to F o size 12{F rSub { size 8{o} } } {} . The perpendicular lever arms of the input and output forces are l i size 12{l rSub { size 8{i} } } {} and l 0 size 12{l rSub { size 8{0} } } {} .

[link] shows a lever type that is used as a nail puller. Crowbars, seesaws, and other such levers are all analogous to this one. F i is the input force and F o size 12{F rSub { size 8{o} } } {} is the output force. There are three vertical forces acting on the nail puller (the system of interest) – these are F i , F o , and N size 12{`N} {} . F n size 12{F rSub { size 8{n} } } {} is the reaction force back on the system, equal and opposite to F o size 12{F rSub { size 8{o} } } {} . (Note that F o size 12{F rSub { size 8{o} } } {} is not a force on the system.) N size 12{`N} {} is the normal force upon the lever, and its torque is zero since it is exerted at the pivot. The torques due to F i size 12{F rSub { size 8{i} } } {} and F n size 12{F rSub { size 8{n} } } {} must be equal to each other if the nail is not moving, to satisfy the second condition for equilibrium net τ = 0 size 12{ left ("net"`τ=0 right )} {} . (In order for the nail to actually move, the torque due to F i size 12{F rSub { size 8{n} } } {} must be ever-so-slightly greater than torque due to F n size 12{F rSub { size 8{n} } } {} .) Hence,

l i F i = l o F o size 12{l rSub { size 8{i} } F rSub { size 8{i} } = l rSub { size 8{o} } F rSub { size 8{o} } } {}

where l i size 12{l rSub { size 8{i} } } {} and l o size 12{l rSub { size 8{o} } } {} are the distances from where the input and output forces are applied to the pivot, as shown in the figure. Rearranging the last equation gives

F o F i = l i l o . size 12{ { {F rSub { size 8{o} } } over {F rSub { size 8{i} } } } = { {l rSub { size 8{i} } } over {l rSub { size 8{o} } } } } {}

What interests us most here is that the magnitude of the force exerted by the nail puller, F o size 12{F rSub { size 8{o} } } {} , is much greater than the magnitude of the input force applied to the puller at the other end, F i size 12{F rSub { size 8{i} } } {} . For the nail puller,

MA = F o F i = l i l o . size 12{"MA"= { {F rSub { size 8{o} } } over {F rSub { size 8{i} } } } = { {l rSub { size 8{i} } } over {l rSub { size 8{o} } } } } {}

This equation is true for levers in general. For the nail puller, the MA is certainly greater than one. The longer the handle on the nail puller, the greater the force you can exert with it.

Two other types of levers that differ slightly from the nail puller are a wheelbarrow and a shovel, shown in [link] . All these lever types are similar in that only three forces are involved – the input force, the output force, and the force on the pivot – and thus their MAs are given by MA = F o F i size 12{"MA"= { {F rSub { size 8{o} } } over {F rSub { size 8{i} } } } } {} and MA = d 1 d 2 size 12{"MA"= { {d rSub { size 8{1} } } over {d rSub { size 8{2} } } } } {} , with distances being measured relative to the physical pivot. The wheelbarrow and shovel differ from the nail puller because both the input and output forces are on the same side of the pivot.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask