<< Chapter < Page Chapter >> Page >
  • Describe an elastic collision of two objects in one dimension.
  • Define internal kinetic energy.
  • Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
  • Determine the final velocities in an elastic collision given masses and initial velocities.

Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision    is one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the system. [link] illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily allowing nearly elastic collisions on them.

Elastic collision

An elastic collision    is one that conserves internal kinetic energy.

Internal kinetic energy

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.

The system of interest contains a smaller mass m sub1 and a larger mass m sub2 moving on a frictionless surface. M sub 2 moves with velocity V sub 2 and momentum p sub 2 and m sub 1 moves behind m sub 2, with velocity V sub 1 and momentum p sub 1 toward the right direction. P 1 plus P 2 equals p total. The net force is zero. After collision m sub 1 moves toward the left with velocity V sub 1 while m sub 2 moves toward the right with velocity V sub 2 on the same frictionless surface. The momentum of m sub 1 becomes p 1 prime and m 2 becomes p 2 prime now. P 1 prime plus p 2 prime equals p total.
An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two objects in a one-dimensional collision is

p 1 + p 2 = p 1 + p 2 F net = 0 size 12{ left (F rSub { size 8{"net"} } =0 right )} {}

or

m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 F net = 0 , size 12{ left (F rSub { size 8{"net"} } =0 right )} {}

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision. Thus,

1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 (two-object elastic collision)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

Calculating velocities following an elastic collision

Calculate the velocities of two objects following an elastic collision, given that

m 1 = 0 . 500 kg, m 2 = 3 . 50 kg, v 1 = 4 . 00 m/s, and v 2 = 0 . size 12{m rSub { size 8{1} } =0 "." "500"" kg, "m rSub { size 8{2} } =3 "." "50"" kg, "v rSub { size 8{1} } =4 "." "00"" m/s, and "v rSub { size 8{2} } =0 "." } {}

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is slightly simpler than the situation shown in [link] where both objects are initially moving. We are asked to find two unknowns (the final velocities v 1 and v 2 size 12{v rSub { size 8{2} } '} {} ). To find two unknowns, we must use two independent equations. Because this collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and thus v 2 = 0 size 12{v rSub { size 8{2} } =0} {} . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Questions & Answers

what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask