<< Chapter < Page Chapter >> Page >
  • State Kepler’s laws of planetary motion.
  • Derive the third Kepler’s law for circular orbits.
  • Discuss the Ptolemaic model of the universe.

Examples of gravitational orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris. The Moon’s orbit about Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets about the Sun are no less interesting. If we look further, we see almost unimaginable numbers of stars, galaxies, and other celestial objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various degrees of precision. Precise descriptions of complex systems must be made with large computers. However, we can describe an important class of orbits without the use of computers, and we shall find it instructive to study them. These orbits have the following characteristics:

  1. A small mass m size 12{M} {} orbits a much larger mass M size 12{M} {} . This allows us to view the motion as if M size 12{M} {} were stationary—in fact, as if from an inertial frame of reference placed on M size 12{M} {} —without significant error. Mass m size 12{m} {} is the satellite of M size 12{M} {} , if the orbit is gravitationally bound.
  2. The system is isolated from other masses . This allows us to neglect any small effects due to outside masses.

The conditions are satisfied, to good approximation, by Earth’s satellites (including the Moon), by objects orbiting the Sun, and by the satellites of other planets. Historically, planets were studied first, and there is a classical set of three laws, called Kepler’s laws of planetary motion, that describe the orbits of all bodies satisfying the two previous conditions (not just planets in our solar system). These descriptive laws are named for the German astronomer Johannes Kepler (1571–1630), who devised them after careful study (over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho Brahe (1546–1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data constitute the evidence from which new interpretations and meanings can be constructed.

Kepler’s laws of planetary motion

Kepler’s First Law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

In figure a, an ellipse is shown on the coordinate axes. Two foci of the ellipse are joined to a point m on the ellipse. A pencil is shown at the point m. In figure b the elliptical path of a planet is shown. At the left focus f-one of the path the Sun is shown. The planet is shown just above the Sun on the elliptical path.
(a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci ( f 1 size 12{f rSub { size 8{1} } } {} and f 2 size 12{f rSub { size 8{2} } } {} ) is a constant. You can draw an ellipse as shown by putting a pin at each focus, and then placing a string around a pencil and the pins and tracing a line on paper. A circle is a special case of an ellipse in which the two foci coincide (thus any point on the circle is the same distance from the center). (b) For any closed gravitational orbit, m size 12{m} {} follows an elliptical path with M size 12{M} {} at one focus. Kepler’s first law states this fact for planets orbiting the Sun.

Kepler’s Second Law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times (see [link] ).

Questions & Answers

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
Collins Reply
What is thermal heat all about
Abel Reply
why uniform circular motion is called a periodic motion?.
Boniface Reply
when a train start from A & it returns at same station A . what is its acceleration?
Mwdan Reply
what is distance of A to B of the stations and what is the time taken to reach B from A
the information provided is not enough
Hmmmm maybe the question is logical
where are the parameters for calculation
there is enough information to calculate an AVERAGE acceleration
mistake, there is enough information to calculate an average velocity
what is the unit of momentum
wha are the types of radioactivity ?
Worku Reply
what are the types of radioactivity
what is static friction
Golu Reply
It is the opposite of kinetic friction
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
I don't get it,if it's static then there will be no friction.
It means that static friction is that friction that most be overcome before a body can move
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
It is a force a body must overcome in order for the body to move.
If a particle accelerator explodes what happens
why we see the edge effect in case of the field lines of capacitor?
what is wave
Muhammed Reply
what is force
force is something which is responsible for the object to change its position
more technically it is the product of mass of an object and Acceleration produced in it
wave is disturbance in any medium
energy is distributed in any medium through particles of medium.
If a particle accelerator explodes what happens
Eboh Reply
we have to first figure out .... wats a particle accelerator first
What is surface tension
Subi Reply
The resistive force of surface.
Who can tutor me on simple harmonic motion
yusuf Reply
on both a string and peldulum?
Do you have a chit-chat contact
I dont have social media but i do have an email?
Which is
Where are you chatting from
I don't understand the basics of this group
teach him SHM init
Simple harmonic motion
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
syed Reply
definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
how many topic are in physics
Praise what level are you
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Yeah basics of physics prin8
Heat nd Co for a level
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
please send the answer
the range of objects and phenomena studied in physics is
Bethel Reply
I don't know please give the answer

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?