<< Chapter < Page Chapter >> Page >

Making connections

Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics , modern physics is exploring the connections of gravity to other forces, space, and time. General relativity alters our view of gravitation, leading us to think of gravitation as bending space and time.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force caused the Moon to orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its orbit. Newton found that the two accelerations agreed “pretty nearly.”

Earth’s gravitational force is the centripetal force making the moon move in a curved path

(a) Find the acceleration due to Earth’s gravity at the distance of the Moon.

(b) Calculate the centripetal acceleration needed to keep the Moon in its orbit (assuming a circular orbit about a fixed Earth), and compare it with the value of the acceleration due to Earth’s gravity that you have just found.

Strategy for (a)

This calculation is the same as the one finding the acceleration due to gravity at Earth’s surface, except that r size 12{r} {} is the distance from the center of Earth to the center of the Moon. The radius of the Moon’s nearly circular orbit is 3 . 84 × 10 8 m size 12{3 "." "84" times "10" rSup { size 8{8} } `m} {} .

Solution for (a)

Substituting known values into the expression for g size 12{M} {} found above, remembering that M size 12{M} {} is the mass of Earth not the Moon, yields

g = G M r 2 = 6 . 67 × 10 11 N m 2 kg 2 × 5 . 98 × 10 24 kg ( 3 . 84 × 10 8 m ) 2 = 2 . 70 × 10 3 m/s. 2

Strategy for (b)

Centripetal acceleration can be calculated using either form of

a c = v 2 r a c = 2 } . size 12{ left none matrix { a rSub { size 8{c} } = { {v rSup { size 8{2} } } over {r} } {} ##a rSub { size 8{c} } =rω rSup { size 8{2} } } right rbrace "." } {}

We choose to use the second form:

a c = 2 , size 12{a rSub { size 8{c} } =rω rSup { size 8{2} } } {}

where ω size 12{ω} {} is the angular velocity of the Moon about Earth.

Solution for (b)

Given that the period (the time it takes to make one complete rotation) of the Moon’s orbit is 27.3 days, (d) and using

1 d × 24 hr d × 60 min hr × 60 s min = 86,400 s size 12{ω= { {Δθ} over {Δt} } = { {2π" rad"} over { \( "27" "." "3 d" \) \( "86,400 s/d" \) } } =2 "." "66" times "10" rSup { size 8{ - 6} } { {"rad"} over {s} } } {}

we see that

ω = Δ θ Δ t = rad ( 27 . 3 d ) ( 86,400 s/d ) = 2 . 66 × 10 6 rad s . size 12{ω= { {Δθ} over {Δt} } = { {2π" rad"} over { \( "27" "." "3 d" \) \( "86,400 s/d" \) } } =2 "." "66" times "10" rSup { size 8{ - 6} } { {"rad"} over {s} } } {}

The centripetal acceleration is

a c = 2 = ( 3 . 84 × 10 8 m ) ( 2 . 66 × 10 6 rad/s ) 2 = 2.72 × 10 3 m/s. 2 alignl { stack { size 12{a rSub { size 8{c} } =rω rSup { size 8{2} } = \( 3 "." "84" times "10" rSup { size 8{8} } " m" \) \( 2 "." "66" times "10" rSup { size 8{ - 6} } " rad/s" \) rSup { size 8{2} } } {} #" "=2 "." "72" times "10" rSup { size 8{ - 3} } " m/s" rSup { size 8{2} } {} } } {}

The direction of the acceleration is toward the center of the Earth.

Discussion

The centripetal acceleration of the Moon found in (b) differs by less than 1% from the acceleration due to Earth’s gravity found in (a). This agreement is approximate because the Moon’s orbit is slightly elliptical, and Earth is not stationary (rather the Earth-Moon system rotates about its center of mass, which is located some 1700 km below Earth’s surface). The clear implication is that Earth’s gravitational force causes the Moon to orbit Earth.

Got questions? Get instant answers now!

Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton’s third law, if Earth exerts a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see [link] ). We do not sense the Moon’s effect on Earth’s motion, because the Moon’s gravity moves our bodies right along with Earth but there are other signs on Earth that clearly show the effect of the Moon’s gravitational force as discussed in Satellites and Kepler's Laws: An Argument for Simplicity .

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask