<< Chapter < Page Chapter >> Page >

Making connections

Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics , modern physics is exploring the connections of gravity to other forces, space, and time. General relativity alters our view of gravitation, leading us to think of gravitation as bending space and time.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force caused the Moon to orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its orbit. Newton found that the two accelerations agreed “pretty nearly.”

Earth’s gravitational force is the centripetal force making the moon move in a curved path

(a) Find the acceleration due to Earth’s gravity at the distance of the Moon.

(b) Calculate the centripetal acceleration needed to keep the Moon in its orbit (assuming a circular orbit about a fixed Earth), and compare it with the value of the acceleration due to Earth’s gravity that you have just found.

Strategy for (a)

This calculation is the same as the one finding the acceleration due to gravity at Earth’s surface, except that r size 12{r} {} is the distance from the center of Earth to the center of the Moon. The radius of the Moon’s nearly circular orbit is 3 . 84 × 10 8 m size 12{3 "." "84" times "10" rSup { size 8{8} } `m} {} .

Solution for (a)

Substituting known values into the expression for g size 12{M} {} found above, remembering that M size 12{M} {} is the mass of Earth not the Moon, yields

g = G M r 2 = 6 . 67 × 10 11 N m 2 kg 2 × 5 . 98 × 10 24 kg ( 3 . 84 × 10 8 m ) 2 = 2 . 70 × 10 3 m/s. 2

Strategy for (b)

Centripetal acceleration can be calculated using either form of

a c = v 2 r a c = 2 } . size 12{ left none matrix { a rSub { size 8{c} } = { {v rSup { size 8{2} } } over {r} } {} ##a rSub { size 8{c} } =rω rSup { size 8{2} } } right rbrace "." } {}

We choose to use the second form:

a c = 2 , size 12{a rSub { size 8{c} } =rω rSup { size 8{2} } } {}

where ω size 12{ω} {} is the angular velocity of the Moon about Earth.

Solution for (b)

Given that the period (the time it takes to make one complete rotation) of the Moon’s orbit is 27.3 days, (d) and using

1 d × 24 hr d × 60 min hr × 60 s min = 86,400 s size 12{ω= { {Δθ} over {Δt} } = { {2π" rad"} over { \( "27" "." "3 d" \) \( "86,400 s/d" \) } } =2 "." "66" times "10" rSup { size 8{ - 6} } { {"rad"} over {s} } } {}

we see that

ω = Δ θ Δ t = rad ( 27 . 3 d ) ( 86,400 s/d ) = 2 . 66 × 10 6 rad s . size 12{ω= { {Δθ} over {Δt} } = { {2π" rad"} over { \( "27" "." "3 d" \) \( "86,400 s/d" \) } } =2 "." "66" times "10" rSup { size 8{ - 6} } { {"rad"} over {s} } } {}

The centripetal acceleration is

a c = 2 = ( 3 . 84 × 10 8 m ) ( 2 . 66 × 10 6 rad/s ) 2 = 2.72 × 10 3 m/s. 2 alignl { stack { size 12{a rSub { size 8{c} } =rω rSup { size 8{2} } = \( 3 "." "84" times "10" rSup { size 8{8} } " m" \) \( 2 "." "66" times "10" rSup { size 8{ - 6} } " rad/s" \) rSup { size 8{2} } } {} #" "=2 "." "72" times "10" rSup { size 8{ - 3} } " m/s" rSup { size 8{2} } {} } } {}

The direction of the acceleration is toward the center of the Earth.

Discussion

The centripetal acceleration of the Moon found in (b) differs by less than 1% from the acceleration due to Earth’s gravity found in (a). This agreement is approximate because the Moon’s orbit is slightly elliptical, and Earth is not stationary (rather the Earth-Moon system rotates about its center of mass, which is located some 1700 km below Earth’s surface). The clear implication is that Earth’s gravitational force causes the Moon to orbit Earth.

Got questions? Get instant answers now!

Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton’s third law, if Earth exerts a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see [link] ). We do not sense the Moon’s effect on Earth’s motion, because the Moon’s gravity moves our bodies right along with Earth but there are other signs on Earth that clearly show the effect of the Moon’s gravitational force as discussed in Satellites and Kepler's Laws: An Argument for Simplicity .

Questions & Answers

full meaning of GPS system
Anaele Reply
how to prove that Newton's law of universal gravitation F = GmM ______ R²
Kaka Reply
sir dose it apply to the human system
Olubukola Reply
prove that the centrimental force Fc= M1V² _________ r
Kaka Reply
prove that centripetal force Fc = MV² ______ r
Kaka
how lesers can transmit information
mitul Reply
griffts bridge derivative
Ganesh Reply
below me
please explain; when a glass rod is rubbed with silk, it becomes positive and the silk becomes negative- yet both attracts dust. does dust have third types of charge that is attracted to both positive and negative
Timothy Reply
what is a conductor
Timothy
hello
Timothy
below me
why below you
Timothy
no....I said below me ...... nothing below .....ok?
dust particles contains both positive and negative charge particles
Mbutene
corona charge can verify
Stephen
when pressure increases the temperature remain what?
Ibrahim Reply
what is frequency
Mbionyi Reply
define precision briefly
Sujitha Reply
CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.
MITHRA Reply
hope this helps
what's critical angle
Mahmud Reply
The Critical Angle Derivation So the critical angle is defined as the angle of incidence that provides an angle of refraction of 90-degrees. Make particular note that the critical angle is an angle of incidence value. For the water-air boundary, the critical angle is 48.6-degrees.
dude.....next time Google it
okay whatever
Chidalu
pls who can give the definition of relative density?
Temiloluwa
the ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
Chidalu
What is momentum
aliyu Reply
mass ×velocity
Chidalu
it is the product of mass ×velocity of an object
Chidalu
how do I highlight a sentence]p? I select the sentence but get options like copy or web search but no highlight. tks. src
Sean Reply
then you can edit your work anyway you want
Wat is the relationship between Instataneous velocity
Oyinlusi Reply
Instantaneous velocity is defined as the rate of change of position for a time interval which is almost equal to zero
Astronomy
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask