<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Calculate coefficient of friction on a car tire.
  • Calculate ideal speed and angle of a car on a turn.

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope on a tether ball, the force of Earth's gravity on the Moon, friction between roller skates and a rink floor, a banked roadway's force on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force    . The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration. According to Newton's second law of motion, net force is mass times acceleration: net F = ma size 12{F= ital "ma"} {} . For uniform circular motion, the acceleration is the centripetal acceleration— a = a c size 12{a=a rSub { size 8{c} } } {} . Thus, the magnitude of centripetal force F c size 12{F rSub { size 8{c} } } {} is

F c = m a c . size 12{F rSub { size 8{c} } =ma rSub { size 8{c} } } {}

By using the expressions for centripetal acceleration a c size 12{a rSub { size 8{c} } } {} from a c = v 2 r ; a c = 2 size 12{a rSub { size 8{c} } = { {v rSup { size 8{2} } } over {r} } ;``a rSub { size 8{c} } =rω rSup { size 8{2} } } {} , we get two expressions for the centripetal force F c size 12{F rSub { size 8{c} } } {} in terms of mass, velocity, angular velocity, and radius of curvature:

F c = m v 2 r ; F c = mr ω 2 . size 12{F rSub { size 8{c} } =m { {v rSup { size 8{2} } } over {r} } ;``F rSub { size 8{c} } = ital "mr"ω rSup { size 8{2} } } {}

You may use whichever expression for centripetal force is more convenient. Centripetal force F c size 12{F rSub { size 8{c} } } {} is always perpendicular to the path and pointing to the center of curvature, because a c size 12{a rSub { size 8{c} } } {} is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for r size 12{r} {} , you get

r = mv 2 F c . size 12{r= { { ital "mv" rSup { size 8{2} } } over {F rSub { size 8{c} } } } } {}

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

The given figure consists of two semicircles, one over the other. The top semicircle is bigger and the one below is smaller. In both the figures, the direction of the path is given along the semicircle in the counter-clockwise direction. A point is shown on the path, where the radius from the circle, r, is shown with an arrow from the center of the circle. At the same point, the centripetal force is shown in the opposite direction to that of radius arrow. The velocity, v, is shown along this point in the left upward direction and is perpendicular to the force. In both the figures, the velocity is same, but the radius is smaller and centripetal force is larger in the lower figure.
The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes uniform circular motion. The larger the F c size 12{F rSub { size 8{c} } } {} , the smaller the radius of curvature r size 12{r} {} and the sharper the curve. The second curve has the same v size 12{v} {} , but a larger F c size 12{F rSub { size 8{c} } } {} produces a smaller r size 12{ { {r}} sup { ' }} {} .

What coefficient of friction do car tires need on a flat curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction being the reason that keeps the car from slipping (see [link] ).

Strategy and Solution for (a)

We know that F c = mv 2 r . Thus,

F c = mv 2 r = ( 900 kg ) ( 25.0 m/s ) 2 ( 500 m ) = 1125 N.

Strategy for (b)

[link] shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We know that the maximum static friction (at which the tires roll but do not slip) is μ s N size 12{μ rSub { size 8{s} } N} {} , where μ s size 12{μ rSub { size 8{s} } } {} is the static coefficient of friction and N is the normal force. The normal force equals the car's weight on level ground, so that N = mg . Thus the centripetal force in this situation is

F c = f = μ s N = μ s mg . size 12{F rSub { size 8{c} } =f=μ rSub { size 8{s} } N=μ rSub { size 8{s} } ital "mg"} {}

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for F c size 12{F rSub { size 8{c} } } {} from the equation

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask