<< Chapter < Page Chapter >> Page >
Typical values of drag coefficient C size 12{C} {} .
Drag coefficient values
Object C
Airfoil 0.05
Toyota Camry 0.28
Ford Focus 0.32
Honda Civic 0.36
Ferrari Testarossa 0.37
Dodge Ram pickup 0.43
Sphere 0.45
Hummer H2 SUV 0.64
Skydiver (feet first) 0.70
Bicycle 0.90
Skydiver (horizontal) 1.0
Circular flat plate 1.12

Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being redesigned as are the clothes that athletes wear. Bicycle racers and some swimmers and runners wear full bodysuits. Australian Cathy Freeman wore a full body suit in the 2000 Sydney Olympics, and won the gold medal for the 400 m race. Many swimmers in the 2008 Beijing Olympics wore (Speedo) body suits; it might have made a difference in breaking many world records (See [link] ). Most elite swimmers (and cyclists) shave their body hair. Such innovations can have the effect of slicing away milliseconds in a race, sometimes making the difference between a gold and a silver medal. One consequence is that careful and precise guidelines must be continuously developed to maintain the integrity of the sport.

Three swimmers with are each wearing an L Z R Racer Suit, which is a swimsuit composed of elastane nylon and polyurethane. The seams of the suit are ultrasonically welded to reduce drag.
Body suits, such as this LZR Racer Suit, have been credited with many world records after their release in 2008. Smoother “skin” and more compression forces on a swimmer’s body provide at least 10% less drag. (credit: NASA/Kathy Barnstorff)

Some interesting situations connected to Newton’s second law occur when considering the effects of drag forces upon a moving object. For instance, consider a skydiver falling through air under the influence of gravity. The two forces acting on him are the force of gravity and the drag force (ignoring the buoyant force). The downward force of gravity remains constant regardless of the velocity at which the person is moving. However, as the person’s velocity increases, the magnitude of the drag force increases until the magnitude of the drag force is equal to the gravitational force, thus producing a net force of zero. A zero net force means that there is no acceleration, as given by Newton’s second law. At this point, the person’s velocity remains constant and we say that the person has reached his terminal velocity ( v t size 12{v rSub { size 8{t} } } {} ). Since F D size 12{F rSub { size 8{D} } } {} is proportional to the speed, a heavier skydiver must go faster for F D size 12{F rSub { size 8{D} } } {} to equal his weight. Let’s see how this works out more quantitatively.

At the terminal velocity,

F net = mg F D = ma = 0 . size 12{F rSub { size 8{"net"} } = ital "mg" - F rSub { size 8{D} } = ital "ma"=0 "." } {}

Thus,

mg = F D . size 12{ ital "mg"=F rSub { size 8{D} } "." } {}

Using the equation for drag force, we have

mg = 1 2 ρ CAv 2 . size 12{ ital "mg"= { {1} over {2} } ρ ital "CAv" rSup { size 8{2} } } {}

Solving for the velocity, we obtain

v = 2 mg ρ CA . size 12{v= sqrt { { {2 ital "mg"} over {ρ ital "CA"} } } } {}

Assume the density of air is ρ = 1 . 21 kg /m 3 size 12{ρ=1 "." "21"" kg/m" rSup { size 8{3} } } {} . A 75-kg skydiver descending head first will have an area approximately A = 0 . 18 m 2 and a drag coefficient of approximately C = 0 . 70 size 12{C=0 "." "70"} {} . We find that

v = 2 ( 75 kg ) ( 9 .80 m /s 2 ) ( 1 . 21 kg /m 3 ) ( 0 . 70 ) ( 0.18 m 2 ) = 98 m/s = 350 km/h . alignl { stack { size 12{v= sqrt { { {2 \( "75"`"kg" \) \( 9 "." "80"" m/s" rSup { size 8{2} } \) } over { \( 1 "." "21"" kg/m" rSup { size 8{3} } \) \( 0 "." "70" \) \( 0 "." "18"`m rSup { size 8{2} } \) } } } } {} #="98"`"m/s" {} # ="350"`"km/h" "." {}} } {}

This means a skydiver with a mass of 75 kg achieves a maximum terminal velocity of about 350 km/h while traveling in a pike (head first) position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may decrease to about 200 km/h as the area increases. This terminal velocity becomes much smaller after the parachute opens.

Questions & Answers

the meaning of phrase in physics
Chovwe Reply
is the meaning of phrase in physics
Chovwe
write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
Gabriel Reply
how does a model differ from a theory
Friday Reply
what is vector quantity
Ridwan Reply
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
Jack Reply
what's electromagnetic induction
Chinaza Reply
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
Ajayi Reply
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
Gabriel Reply
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
Gabriel Reply
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
Ademiye
yes it was an assignment question "^"represent raise to power pls
Gabriel
mu/y³ u>v²k² uk²/√u-vk please help me out
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
Imtiaz Reply
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Ademiye
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
Isaac Reply
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
Mildred Reply
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
Ademiye
method of polarization
Ajayi
What is atomic number?
Makperr Reply
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
Yinka Reply
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
Taheer Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask