<< Chapter < Page Chapter >> Page >
  • Apply problem-solving techniques to solve for quantities in more complex systems of forces.
  • Integrate concepts from kinematics to solve problems using Newton's laws of motion.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve also to illustrate some further subtleties of physics and to help build problem-solving skills.

Drag force on a barge

Suppose two tugboats push on a barge at different angles, as shown in [link] . The first tugboat exerts a force of 2.7 × 10 5 N size 12{2 "." 7 times "10" rSup { size 8{5} } " N"} {} in the x -direction, and the second tugboat exerts a force of 3.6 × 10 5 N size 12{3 "." 6 times "10" rSup { size 8{5} } " N"} {} in the y -direction.

(a) A view from above two tugboats pushing on a barge. One tugboat is pushing with the force F sub x equal to two point seven multiplied by ten to the power five newtons, shown by a vector arrow acting toward the right in the x direction. Another tugboat is pushing with a force F sub y equal to three point six multiplied by ten to the power five newtons acting upward in the positive y direction. Acceleration of the barge, a, is shown by a vector arrow directed fifty-three point one degree angle above the x axis. In the free-body diagram, F sub y is acting on a point upward, F sub x is acting toward the right, and F sub D is acting approximately southwest. (b) A right triangle is made by the vectors F sub x and F sub y. The base vector is shown by the force vector F sub x. and the perpendicular vector is shown by the force vector F sub y. The resultant is the hypotenuse of this triangle, making a fifty-three point one degree angle from the base, shown by the vector force F sub net pointing up the inclination. A vector F sub D points down the incline.
(a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and are not shown. Since the applied forces are perpendicular, the x - and y -axes are in the same direction as F x size 12{F rSub { size 8{x} } } {} and F y size 12{F rSub { size 8{y} } } {} . The problem quickly becomes a one-dimensional problem along the direction of F app size 12{F rSub { size 8{"app"} } } {} , since friction is in the direction opposite to F app size 12{F rSub { size 8{"app"} } } {} .

If the mass of the barge is 5.0 × 10 6 kg size 12{5 times "10" rSup { size 8{6} } " kg"} {} and its acceleration is observed to be 7 . 5 × 10 2 m/s 2 size 12{7 "." "52" times "10" rSup { size 8{ - 2} } " m/s" rSup { size 8{2} } } {} in the direction shown, what is the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in [link] (a) . We will define the total force of the tugboats on the barge as F app size 12{F rSub { size 8{"app"} } } {} so that:

F app = F x + F y size 12{F rSub { size 8{ ital "app"} } ital "= F" rSub { size 8{x} } ital "+ F" rSub { size 8{y} } } {}

Since the barge is flat bottomed, the drag of the water F D size 12{F rSub { size 8{D} } } {} will be in the direction opposite to F app size 12{F rSub { size 8{"app"} } } {} , as shown in the free-body diagram in [link] (b). The system of interest here is the barge, since the forces on it are given as well as its acceleration. Our strategy is to find the magnitude and direction of the net applied force F app size 12{F rSub { size 8{"app"} } } {} , and then apply Newton’s second law to solve for the drag force F D size 12{F rSub { size 8{D} } } {} .

Solution

Since F x size 12{F rSub { size 8{x} } } {} and F y size 12{F rSub { size 8{y} } } {} are perpendicular, the magnitude and direction of F app size 12{F rSub { size 8{"app"} } } {} are easily found. First, the resultant magnitude is given by the Pythagorean theorem:

F app = F x 2 + F y 2 F app = ( 2.7 × 10 5 N ) 2 + ( 3.6 × 10 5 N ) 2 = 4.5 × 10 5 N. alignl { stack { size 12{F rSub { size 8{ ital "app"} } = \( F rSub { size 8{x} rSup { size 8{2} } } + F rSub { size 8{y} rSup { size 8{2} } } \) rSup { size 8{1/2} } } {} #F rSub { size 8{ ital "app"} } = \( \( 2 "." 7 times "10" rSup { size 8{5} } " N" \) rSup { size 8{2} } + \( 3 "." 6 times "10" rSup { size 8{5} } " N" \) rSup { size 8{2} } \) rSup { size 8{1/2} } =4 "." "50" times "10" rSup { size 8{5} } " N" "." {} } } {}

The angle is given by

θ = tan 1 F y F x θ = tan 1 3.6 × 10 5 N 2.7 × 10 5 N = 53º , alignl { stack { size 12{θ="tan" rSup { size 8{ - 1} } left ( { {F rSub { size 8{y} } } over {F rSub { size 8{x} } } } right )} {} #θ="tan" rSup { size 8{ - 1} } left ( { { \( 2 "." 7 times "10" rSup { size 8{5} } " N" \) } over { \( 3 "." 6 times "10" rSup { size 8{5} } " N" \) } } right )="53" "." 1°, {} } } {}

which we know, because of Newton’s first law, is the same direction as the acceleration. F D size 12{F rSub { size 8{D} } } {} is in the opposite direction of F app size 12{F rSub { size 8{"app"} } } {} , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as F app size 12{F rSub { size 8{"app"} } } {} , but its magnitude is slightly less than F app size 12{F rSub { size 8{"app"} } } {} . The problem is now one-dimensional. From [link] (b) , we can see that

F net = F app F D size 12{F rSub { size 8{"net"} } =F rSub { size 8{"app"} } - F rSub { size 8{D} } } {} .

But Newton’s second law states that

F net = ma size 12{F rSub { size 8{"net"} } = ital "ma"} {} .

Thus,

F app F D = ma size 12{F rSub { size 8{"app"} } - F rSub { size 8{D} } = ital "ma"} {} .

This can be solved for the magnitude of the drag force of the water F D size 12{F rSub { size 8{D} } } {} in terms of known quantities:

F D = F app ma size 12{F rSub { size 8{D} } =F rSub { size 8{"app"} } - ital "ma"} {} .

Substituting known values gives

F D = ( 4 . 5 × 10 5 N ) ( 5 . 0 × 10 6 kg ) ( 7 . 5 × 10 –2 m/s 2 ) = 7 . 5 × 10 4 N size 12{F rSub { size 8{D} } = \( 4 "." "50" times "10" rSup { size 8{5} } " N" \) - \( 5 "." "00" times "10" rSup { size 8{6} } " kg" \) \( 7 "." "50" times "10" rSup { size 8{"-2"} } " m/s" rSup { size 8{2} } \) =7 "." "50" times "10" rSup { size 8{4} } " N"} {} .

The direction of F D size 12{F rSub { size 8{D} } } {} has already been determined to be in the direction opposite to F app size 12{F rSub { size 8{"app"} } } {} , or at an angle of 53º size 12{"53" "." 1°} {} south of west.

Questions & Answers

definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
the range of objects and phenomena studied in physics is
Bethel Reply
what is Linear motion
Hamza Reply
straight line motion is called linear motion
then what
Amera
linear motion is a motion in a line, be it in a straight line or in a non straight line. It is the rate of change of distance.
Saeedul
Hi
aliyu
your are wrong Saeedul
Richard
Linear motion is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension
Jason
is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimensions. 
Praise
what is a classical electrodynamics?
Marga
what is dynamics
Marga
dynamic is the force that stimulates change or progress within the system or process
Oze
what is the formula to calculate wavelength of the incident light
David Reply
if a spring is is stiffness of 950nm-1 what work will be done in extending the spring by 60mmp
Hassan Reply
State the forms of energy
Samzy Reply
machanical
Ridwan
Word : Mechanical wave Definition : The waves, which need a material medium for their propagation, e.g., Sound waves. \n\nOther Definition: The waves, which need a material medium for their propagation, are called mechanical waves. Mechanical waves are also called elastic waves. Sound waves, water waves are examples of mechanical waves.t Definition: wave consisting of periodic motion of matter; e.g. sound wave or water wave as opposed to electromagnetic wave.h
Clement Reply
correct
Akinpelu
what is mechanical wave
Akinpelu Reply
a wave which require material medium for its propagation
syed
The S.I unit for power is what?
Samuel Reply
watt
Okoli
Am I correct
Okoli
it can be in kilowatt, megawatt and so
Femi
yes
Femi
correct
Jaheim
kW
Akinpelu
OK that's right
Samuel
SI.unit of power is.watt=j/c.but kw.and Mw are bigger.umots
syed
What is physics
aish Reply
study of matter and its nature
Akinpelu
The word physics comes from a Greek word Physicos which means Nature.The Knowledge of Nature. It is branch of science which deals with the matter and energy and interaction between them.
Uniform
why in circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction
Syafiqah Reply
reasonable
Femi
because it is balanced by the inward acceleration otherwise known as centripetal acceleration
MUSTAPHA
What is a wave
Mutuma Reply
Tramsmission of energy through a media
Mateo
is the disturbance that carry materials as propagation from one medium to another
Akinpelu
mistakes thanks
Akinpelu
find the triple product of (A*B).C given that A =i + 4j, B=2i - 3j and C = i + k
Favour Reply

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask