<< Chapter < Page Chapter >> Page >

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly accelerating elevators.

Solution for (b)

Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because a = Δ v Δ t size 12{a= { {Δv} over {Δt} } } {} , and Δ v = 0 size 12{Δv=0} {} .

Thus,

F s = ma + mg = 0 + mg size 12{F rSub { size 8{s} } = ital "ma"+ ital "mg"=0+ ital "mg"} {} .

Now

F s = ( 75 . 0 kg ) ( 9 . 80 m/s 2 ) size 12{F rSub { size 8{s} } = \( "75" "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) } {} ,

which gives

F s = 7 35 N size 12{F rSub { size 8{s} } =7"35 N"} {} .

Discussion for (b)

The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator accelerates downward, a size 12{a} {} is negative, and the scale reading is less than the weight of the person, until a constant downward velocity is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and accelerating downward at g size 12{g} {} , then the scale reading will be zero and the person will appear to be weightless.

Integrating concepts: newton’s laws of motion and kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the following steps to approach the problem:

Problem-Solving Strategy

Step 1. Identify which physical principles are involved . Listing the givens and the quantities to be calculated will allow you to identify the principles involved.
Step 2. Solve the problem using strategies outlined in the text . If these are available for the specific topic, you should refer to them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates how these strategies are applied to an integrated concept problem.

What force must a soccer player exert to reach top speed?

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player’s mass is 70.0 kg, and air resistance is negligible.

Strategy

  1. To solve an integrated concept problem , we must first identify the physical principles involved and identify the chapters in which they are found. Part (a) of this example considers acceleration along a straight line. This is a topic of kinematics . Part (b) deals with force , a topic of dynamics found in this chapter.
  2. The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied. These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Questions & Answers

***kidsgetmoney.co/share/Certified1 Is it true?
Eklu Reply
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
2.68m/s
Doc
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
babar
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
babar
how 2.68
babar
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
Eklu
***kidsgetmoney.co/share/Certified1 check and see
Eklu
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
Bala
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
KgM2S2
Acquah
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
kk
Doc
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
Fagbenro
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
Devansh
K
Manyo
thanks jare
Doc
Thanks
AMADI
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
AMADI
what is physic
zalmia Reply
please gave me answar
zalmia
Study of matter and energy
Fagbenro
physics is the science of matter and energy and their interactions
Acquah
physics is the technology behind air and matter
Doc
Okay
William
hi sir
Bala
how easy to understanding physics sir
Bala
Easy to learn
William
31. Calculate the initial (from rest) acceleration of a proton in a 5.00×106 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
Catina Reply
A tennis ball is projected at an angle and attains a range of 78. if the velocity is 30metres per second, calculate the angle
Shimolla
what friction
Wisdom Reply
question on friction
Wisdom
the rubbing of one object or surface against another.
author
momentum is the product of mass and it's velocity.
Algayawi
what are bioelements?
Edina
Friction is a force that exist between two objects in contact. e.g. friction between road and car tires.
Eklu
Hi am new
Oharisi
With regards to a shielded cable, is there an induced current on the shield when the center conductor is carrying an AC Current? What is the formula?
John Reply
what is phenomena
remilekun Reply
no idea
Awoke
its phenomenon, an observable fact.
author
Mujy achy marks hasil krny k leay kesy tayari krni ho ge?plz help me I'M sooo woried
Imran Reply
konsi university m ho and konsa course h
Mohit
what is force
Chukwuemeka Reply
Force is the cause and momentum is its effect.
Salman
A force is a pull or a push on an object, causing an object to move or a moving object to stop.
Eklu
Find the velocity that make one full oscillation in 10 seconds and also makes 1.7meters in the same time
Prince Reply
yes
Rafael
OK
Oluwaseun
17m/s
Eklu
17m/s
Gabriel
0.17
Devansh
17m/s
Harrison
how did you solve it
Acquah
t=10s a=1.7m v=? u=0 but v=u+at but u=0 v=at 1.7×10=17 v=17m/s that's how I solved it.
Eklu
kk
Acquah
How is a=1.7m?
El
a is an acceleration
El
eklu..... I respect u....
Doc
its relating to time and oscillation made.
Eklu
You mean A as an amplitude?
El
ok
Emmanuel
what is voltmeter
Jeremiah Reply
A voltmeter is a device use in measuring electric potential in a volt.
Ahmad
thanks
Hafiz
Michelson Morley experiment
Riya Reply

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask