<< Chapter < Page Chapter >> Page >

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly accelerating elevators.

Solution for (b)

Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because a = Δ v Δ t size 12{a= { {Δv} over {Δt} } } {} , and Δ v = 0 size 12{Δv=0} {} .


F s = ma + mg = 0 + mg size 12{F rSub { size 8{s} } = ital "ma"+ ital "mg"=0+ ital "mg"} {} .


F s = ( 75 . 0 kg ) ( 9 . 80 m/s 2 ) size 12{F rSub { size 8{s} } = \( "75" "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) } {} ,

which gives

F s = 7 35 N size 12{F rSub { size 8{s} } =7"35 N"} {} .

Discussion for (b)

The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator accelerates downward, a size 12{a} {} is negative, and the scale reading is less than the weight of the person, until a constant downward velocity is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and accelerating downward at g size 12{g} {} , then the scale reading will be zero and the person will appear to be weightless.

Integrating concepts: newton’s laws of motion and kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the following steps to approach the problem:

Problem-Solving Strategy

Step 1. Identify which physical principles are involved . Listing the givens and the quantities to be calculated will allow you to identify the principles involved.
Step 2. Solve the problem using strategies outlined in the text . If these are available for the specific topic, you should refer to them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates how these strategies are applied to an integrated concept problem.

What force must a soccer player exert to reach top speed?

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player’s mass is 70.0 kg, and air resistance is negligible.


  1. To solve an integrated concept problem , we must first identify the physical principles involved and identify the chapters in which they are found. Part (a) of this example considers acceleration along a straight line. This is a topic of kinematics . Part (b) deals with force , a topic of dynamics found in this chapter.
  2. The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied. These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Questions & Answers

what is a half life
Mama Reply
the time taken for a radioactive element to decay by half of its original mass
what is radioactive element
Half of the total time required by a radioactive nuclear atom to totally disintegrate
radioactive elements are those with unstable nuclei(ie have protons more than neutrons, or neutrons more than protons
in other words, the radioactive atom or elements have unequal number of protons to neutrons.
state the laws of refraction
state laws of reflection
Why does a bicycle rider bends towards the corner when is turning?
When do we say that the stone thrown vertically up wards accelerate negatively?
Give two importance of insulator placed between plates of a capacitor.
Macho had a shoe with a big sole moving in mudy Road, shanitah had a shoe with a small sole. Give reasons for those two cases.
when was the name taken from
Biola Reply
retardation of a car
when was the name retardation taken
did you mean a motion with velocity decreases uniformly by the time? then, the vector acceleration is opposite direction with vector velocity
Atomic transmutation
Basirat Reply
An atom is the smallest indivisible particular of an element
mosco Reply
what is an atomic
Awene Reply
reference on periodic table
Titus Reply
what Is resonance?
Mozam Reply
phenomena of increasing amplitude from normal position of a substance due to some external source.
What is a black body
Amey Reply
Black body is the ideal body can absorb and emit all radiation
the emissivity of black body is 1. it is a perfect absorber and emitter of heat.
Why is null measurement accurate than standard voltmeter
Neemat Reply
that is photoelectric effect ?
Sabir Reply
It is the emission of electrons when light hits a material
is not just a material
it is the surface of a metal
what is the formula for time of flight ,maxjmum height and range
agangan Reply
what is an atom
how does a lightning rod protect a building from damage due to lightning ?
Faith Reply
due to its surface lustre but due to some factors it can corrode but not easily as it lightning surface
pls what is mirage
light rays bend to produce a displaced image of distant objects; it's an natural & optical phenomenon......
what is the dimensional formula for torque
Otto Reply
same units of energy
what is same units of energy?
M L2 T -2
it is like checking the dimension of force. which is ML2T-2
M L2 T-2
what is the significance of moment of inertia?
an object of mass 200g moves along a circular path of radius 0.5cm with a speed of 2m/s. calculate the angular velocity ii period iii frequency of the object
Faith Reply
w = 2/(0.005) period = PIE(0.005) f = 1/(PIE(0.005)) assuming uniform motion idk..
supposed the speed on the path is constant angular velocity w (rad/s) = v (m/s) : R (m) period T (s) = 2*Pi * R : v frequency f ( Hz) = 1: T
in the pole vaulter problem, how do they established that the mass is 5.00kg? where did that number come from?
-- Reply

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?