<< Chapter < Page Chapter >> Page >

Discussion

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small for a well-designed hull at low speeds, consistent with the answer to this example, where F D size 12{F rSub { size 8{D} } } {} is less than 1/600th of the weight of the ship.

In the earlier example of a tightrope walker we noted that the tensions in wires supporting a mass were equal only because the angles on either side were equal. Consider the following example, where the angles are not equal; slightly more trigonometry is involved.

Different tensions at different angles

Consider the traffic light (mass 15.0 kg) suspended from two wires as shown in [link] . Find the tension in each wire, neglecting the masses of the wires.

A sketch of a traffic light suspended from two wires supported by two poles is shown. (b) Some forces are shown in this system. Tension T sub one pulling the top of the left-hand pole is shown by the vector arrow along the left wire from the top of the pole, and an equal but opposite tension T sub one is shown by the arrow pointing up along the left-hand wire where it is attached to the light; the wire makes a thirty-degree angle with the horizontal. Tension T sub two is shown by a vector arrow pointing downward from the top of the right-hand pole along the right-hand wire, and an equal but opposite tension T sub two is shown by the arrow pointing up along the right-hand wire, which makes a forty-five degree angle with the horizontal. The traffic light is suspended at the lower end of the wires, and its weight W is shown by a vector arrow acting downward. (c) The traffic light is the system of interest. Tension T sub one starting from the traffic light is shown by an arrow along the wire making an angle of thirty degrees with the horizontal. Tension T sub two starting from the traffic light is shown by an arrow along the wire making an angle of forty-five degrees with the horizontal. The weight W is shown by a vector arrow pointing downward from the traffic light. A free-body diagram is shown with three forces acting on a point. Weight W acts downward; T sub one and T sub two act at an angle with the vertical. (d) Forces are shown with their components T sub one y and T sub two y pointing vertically upward. T sub one x points along the negative x direction, T sub two x points along the positive x direction, and weight W points vertically downward. (e) Vertical forces and horizontal forces are shown separately. Vertical forces T sub one y and T sub two y are shown by vector arrows acting along a vertical line pointing upward, and weight W is shown by a vector arrow acting downward. The net vertical force is zero, so T sub one y plus T sub two y is equal to W. On the other hand, T sub two x is shown by an arrow pointing toward the right, and T sub one x is shown by an arrow pointing toward the left. The net horizontal force is zero, so T sub one x is equal to T sub two x.
A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical ( y ) and horizontal ( x ) axes. The horizontal components of the tensions must cancel, and the sum of the vertical components of the tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in [link] (c). The three forces involved are not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis vertical and one horizontal, and the vector projections on it are shown in part (d) of the figure. There are two unknowns in this problem ( T 1 size 12{T rSub { size 8{1} } } {} and T 2 size 12{T rSub { size 8{2} } } {} ), so two equations are needed to find them. These two equations come from applying Newton’s second law along the vertical and horizontal axes, noting that the net external force is zero along each axis because acceleration is zero.

Solution

First consider the horizontal or x -axis:

F net x = T 2 x T 1 x = 0 size 12{F rSub { size 8{"net x"} } =T rSub { size 8{"2x"} } - T rSub { size 8{"1x"} } =0} {} .

Thus, as you might expect,

T 1 x = T 2 x size 12{T rSub { size 8{"1x"} } = T rSub { size 8{"2x"} } } {} .

This gives us the following relationship between T 1 size 12{T rSub { size 8{1} } } {} and T 2 size 12{T rSub { size 8{2} } } {} :

T 1 cos ( 30º ) = T 2 cos ( 45º ) size 12{T rSub { size 8{1} } "cos" \( "30"° \) =T rSub { size 8{2} } "cos" \( "45"° \) } {} .

Thus,

T 2 = ( 1 . 225 ) T 1 size 12{T rSub { size 8{2} } = \( 1 "." "225" \) T rSub { size 8{1} } } {} .

Note that T 1 size 12{T rSub { size 8{1} } } {} and T 2 size 12{T rSub { size 8{2} } } {} are not equal in this case, because the angles on either side are not equal. It is reasonable that T 2 size 12{T rSub { size 8{2} } } {} ends up being greater than T 1 size 12{T rSub { size 8{1} } } {} , because it is exerted more vertically than T 1 size 12{T rSub { size 8{1} } } {} .

Now consider the force components along the vertical or y -axis:

F net y = T 1 y + T 2 y w = 0 size 12{F rSub { size 8{"net y"} } =T rSub { size 8{"1y"} } +T rSub { size 8{"2y"} } - w=0} {} .

This implies

T 1 y + T 2 y = w size 12{T rSub { size 8{"1y"} } +T rSub { size 8{"2y"} } =w} {} .

Substituting the expressions for the vertical components gives

T 1 sin ( 30º ) + T 2 sin ( 45º ) = w size 12{T rSub { size 8{1} } "sin" \( "30"° \) + T rSub { size 8{2} } "sin" \( "45"° \) =w} {} .

There are two unknowns in this equation, but substituting the expression for T 2 size 12{T rSub { size 8{2} } } {} in terms of T 1 size 12{T rSub { size 8{1} } } {} reduces this to one equation with one unknown:

T 1 ( 0 . 500 ) + ( 1 . 225 T 1 ) ( 0 . 707 ) = w = mg size 12{T rSub { size 8{1} } \( 0 "." "500" \) + \( 1 "." "225"T rSub { size 8{1} } \) \( 0 "." "707" \) =w= ital "mg"} {} ,

which yields

1 . 366 T 1 = ( 15 . 0 kg ) ( 9 . 80 m/s 2 ) size 12{ left (1 "." "366" right )T rSub { size 8{1} } = \( "15" "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) } {} .

Solving this last equation gives the magnitude of T 1 size 12{T rSub { size 8{1} } } {} to be

T 1 = 108 N size 12{T rSub { size 8{1} } ="108"" N"} {} .

Finally, the magnitude of T 2 size 12{T rSub { size 8{2} } } {} is determined using the relationship between them, T 2 size 12{T rSub { size 8{1} } } {} = 1.225 T 1 size 12{T rSub { size 8{2} } } {} , found above. Thus we obtain

T 2 = 132 N size 12{T rSub { size 8{2} } ="132 N"} {} .

Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side are the same (as they were in the earlier example of a tightrope walker).

Questions & Answers

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
Collins Reply
What is thermal heat all about
Abel Reply
why uniform circular motion is called a periodic motion?.
Boniface Reply
when a train start from A & it returns at same station A . what is its acceleration?
Mwdan Reply
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
Worku Reply
what are the types of radioactivity
Worku
what is static friction
Golu Reply
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
Muhammed Reply
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
Eboh Reply
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
Subi Reply
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
yusuf Reply
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
syed Reply
definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
please send the answer
Boniface
the range of objects and phenomena studied in physics is
Bethel Reply
I don't know please give the answer
Boniface

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask