<< Chapter < Page Chapter >> Page >
  • Define nuclear fusion.
  • Discuss processes to achieve practical fusion energy generation.

While basking in the warmth of the summer sun, a student reads of the latest breakthrough in achieving sustained thermonuclear power and vaguely recalls hearing about the cold fusion controversy. The three are connected. The Sun’s energy is produced by nuclear fusion (see [link] ). Thermonuclear power is the name given to the use of controlled nuclear fusion as an energy source. While research in the area of thermonuclear power is progressing, high temperatures and containment difficulties remain. The cold fusion controversy centered around unsubstantiated claims of practical fusion power at room temperatures.

This figure shows Sun rays piercing clouds to illuminate a natural scene.
The Sun’s energy is produced by nuclear fusion. (credit: Spiralz)

Nuclear fusion is a reaction in which two nuclei are combined, or fused , to form a larger nucleus. We know that all nuclei have less mass than the sum of the masses of the protons and neutrons that form them. The missing mass times c 2 size 12{c rSup { size 8{2} } } {} equals the binding energy of the nucleus—the greater the binding energy, the greater the missing mass. We also know that BE / A size 12{"BE"/A} {} , the binding energy per nucleon, is greater for medium-mass nuclei and has a maximum at Fe (iron). This means that if two low-mass nuclei can be fused together to form a larger nucleus, energy can be released. The larger nucleus has a greater binding energy and less mass per nucleon than the two that combined. Thus mass is destroyed in the fusion reaction, and energy is released (see [link] ). On average, fusion of low-mass nuclei releases energy, but the details depend on the actual nuclides involved.

This figure is a graph of atomic mass as horizontal axis versus binding energy per nucleon as vertical axis showing that, as a function of atomic mass, the binding energy per nucleon steeply increases from zero to about 9 M e V per nucleon then, after attaining a peak, slowly decreases to about 8 M e V per nucleon.
Fusion of light nuclei to form medium-mass nuclei destroys mass, because BE / A size 12{"BE"/A} {} is greater for the product nuclei. The larger BE / A size 12{"BE"/A} {} is, the less mass per nucleon, and so mass is converted to energy and released in these fusion reactions.

The major obstruction to fusion is the Coulomb repulsion between nuclei. Since the attractive nuclear force that can fuse nuclei together is short ranged, the repulsion of like positive charges must be overcome to get nuclei close enough to induce fusion. [link] shows an approximate graph of the potential energy between two nuclei as a function of the distance between their centers. The graph is analogous to a hill with a well in its center. A ball rolled from the right must have enough kinetic energy to get over the hump before it falls into the deeper well with a net gain in energy. So it is with fusion. If the nuclei are given enough kinetic energy to overcome the electric potential energy due to repulsion, then they can combine, release energy, and fall into a deep well. One way to accomplish this is to heat fusion fuel to high temperatures so that the kinetic energy of thermal motion is sufficient to get the nuclei together.

The graph shows potential energy as a function of distance r. The potential energy is negative for small r, then rises sharply to a positive peak at medium r, then falls back asymptotically to zero for large r. The curve at small r is labeled “attractive nuclear,” and the curve at large r is labeled “repulsive Coulomb.” A small ball is drawn to the left of the peak with an arrow indicating that the ball is moving down the potential energy curve toward the negative potential energy well. This ball is labeled “pulled together.” Another small ball is drawn to the right of the peak with an arrow indicating it is moving toward larger r. This ball is labeled “repelled.”
Potential energy between two light nuclei graphed as a function of distance between them. If the nuclei have enough kinetic energy to get over the Coulomb repulsion hump, they combine, release energy, and drop into a deep attractive well. Tunneling through the barrier is important in practice. The greater the kinetic energy and the higher the particles get up the barrier (or the lower the barrier), the more likely the tunneling.

Questions & Answers

Why is the sky blue...?
Star Reply
It's filtered light from the 2 forms of radiation emitted from the sun. It's mainly filtered UV rays. There's a theory titled Scatter Theory that covers this topic
Mike
A heating coil of resistance 30π is connected to a 240v supply for 5min to boil a quantity of water in a vessel of heat capacity 200jk. If the initial temperature of water is 20°c and it specific heat capacity is 4200jkgk calculate the mass of water in a vessel
fasawe Reply
A thin equi convex lens is placed on a horizontal plane mirror and a pin held 20 cm vertically above the lens concise in position with its own image the space between the undersurface of d lens and the mirror is filled with water (refractive index =1•33)and then to concise with d image d pin has to
Azummiri Reply
Be raised until its distance from d lens is 27cm find d radius of curvature
Azummiri
what happens when a nuclear bomb and atom bomb bomb explode add the same time near each other
FlAsH Reply
A monkey throws a coconut straight upwards from a coconut tree with a velocity of 10 ms-1. The coconut tree is 30 m high. Calculate the maximum height of the coconut from the top of the coconut tree? Can someone answer my question
Fatinizzah Reply
v2 =u2 - 2gh 02 =10x10 - 2x9.8xh h = 100 ÷ 19.6 answer = 30 - h.
Ramonyai
why is the north side is always referring to n side of magnetic
sam Reply
who is a nurse
Chilekwa Reply
A nurse is a person who takes care of the sick
Bukola
a nurse is also like an assistant to the doctor
Gadjawa
explain me wheatstone bridge
Malik Reply
good app
samuel
Wheatstone bridge is an instrument used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component.
MUHD
Rockwell Software is Rockwell Automation’s "Retro Encabulator". Now, basically the only new principle involved is that instead of power being generated by the relative motion of conductors and fluxes, it’s produced by the modial interaction of magneto-reluctance and capacitive diractance. The origin
Chip
what refractive index
Adjah Reply
write a comprehensive note on primary colours
Harrison Reply
relationship between refractive index, angle of minimum deviation and angle of prism
Harrison
Who knows the formula for binding energy,and what each variable or notation stands for?
Agina Reply
1. A black thermocouple measures the temperature in the chamber with black walls.if the air around the thermocouple is 200 C,the walls are at 1000 C,and the heat transfer constant is 15.compute the temperature gradient
Tikiso Reply
what is the relationship between G and g
Olaiya Reply
G is the u. constant, as g stands for grav, accelerate at a discreet point
Mark
Is that all about it?
Olaiya
pls explain in details
Olaiya
G is a universal constant
Mark
g stands for the gravitational acceleration point. hope this helps you.
Mark
balloon TD is at a gravitational acceleration at a specific point
Mark
I'm sorry this doesn't take dictation very well.
Mark
Can anyone explain the Hooke's law of elasticity?
Olaiya Reply
extension of a spring is proportional to the force applied so long as the force applied does not exceed the springs capacity according to my textbook
Amber
does this help?
Amber
Yes, thanks
Olaiya
so any solid can be compressed how compressed is dependent upon how much force is applied F=deltaL
Amber
sorry, the equation is F=KdeltaL delta is the triangle symbol and L is length so the change in length is proportional to amount of Force applied I believe that is what Hookes law means. anyone catch any mistakes here please correct me :)
Amber
I think it is used only for solids and not liquids, isn't it?
Olaiya
basically as long as you dont exceed the elastic limit the object should return to it original form but if you exceed this limit the object will not return to original shape as it will break
Amber
Thanks for the explanation
Olaiya
yh, liquids don't apply here, that should be viscosity
Chiamaka
hope it helps 😅
Amber
also, an object doesnt have to break necessarily, but it will have a new form :)
Amber
Yes
Olaiya
yeah, I think it is for solids but maybe there is a variation for liquids? that I am not sure of
Amber
ok
Olaiya
good luck!
Amber
Same
Olaiya
aplease i need a help on spcific latent heat of vibrations
Bilgate
specific latent heat of vaporisation
Bilgate
how many kilometers makes a mile
Margaret Reply
about 1.6 kilometres.
Faizyab
near about 1.67 kilometers
Aakash
equal to 1.609344 kilometers.
MUHD
Practice Key Terms 6

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask