<< Chapter < Page Chapter >> Page >
  • Define and discuss the nucleus in an atom.
  • Define atomic number.
  • Define and discuss isotopes.
  • Calculate the density of the nucleus.
  • Explain nuclear force.

What is inside the nucleus? Why are some nuclei stable while others decay? (See [link] .) Why are there different types of decay ( α size 12{α} {} , β size 12{β} {} and γ size 12{γ} {} )? Why are nuclear decay energies so large? Pursuing natural questions like these has led to far more fundamental discoveries than you might imagine.

The first image shows a lump of coal. The second image shows a pair of hands holding a metal uranium disk. Third image shows a cylindrical glass tube containing slivery-brown cesium.
Why is most of the carbon in this coal stable (a), while the uranium in the disk (b) slowly decays over billions of years? Why is cesium in this ampule (c) even less stable than the uranium, decaying in far less than 1/1,000,000 the time? What is the reason uranium and cesium undergo different types of decay ( α size 12{α} {} and β size 12{β} {} , respectively)? (credits: (a) Bresson Thomas, Wikimedia Commons; (b) U.S. Department of Energy; (c) Tomihahndorf, Wikimedia Commons)

We have already identified protons    as the particles that carry positive charge in the nuclei. However, there are actually two types of particles in the nuclei—the proton and the neutron , referred to collectively as nucleons    , the constituents of nuclei. As its name implies, the neutron    is a neutral particle ( q = 0 size 12{q=0} {} ) that has nearly the same mass and intrinsic spin as the proton. [link] compares the masses of protons, neutrons, and electrons. Note how close the proton and neutron masses are, but the neutron is slightly more massive once you look past the third digit. Both nucleons are much more massive than an electron. In fact, m p = 1836 m e size 12{m rSub { size 8{p} } ="1836" m rSub { size 8{e} } } {} (as noted in Medical Applications of Nuclear Physics and m n = 1839 m e size 12{m rSub { size 8{n} } ="1839" m rSub { size 8{e} } } {} .

[link] also gives masses in terms of mass units that are more convenient than kilograms on the atomic and nuclear scale. The first of these is the unified atomic mass    unit (u), defined as

1 u = 1 . 6605 × 10 27 kg. size 12{"1 u"=1 "." "6605"´"10" rSup { size 8{-"27"} } " kg"} {}

This unit is defined so that a neutral carbon 12 C atom has a mass of exactly 12 u. Masses are also expressed in units of MeV/ c 2 . These units are very convenient when considering the conversion of mass into energy (and vice versa), as is so prominent in nuclear processes. Using E = mc 2 size 12{E= ital "mc" rSup { size 8{2} } } {} and units of m size 12{m} {} in MeV/ c 2 size 12{"MeV/"c rSup { size 8{2} } } {} , we find that c 2 size 12{c rSup { size 8{2} } } {} cancels and E size 12{E} {} comes out conveniently in MeV. For example, if the rest mass of a proton is converted entirely into energy, then

E = mc 2 = ( 938.27 MeV/ c 2 ) c 2 = 938.27 MeV. size 12{E= ital "mc" rSup { size 8{2} } = \( "938" "." "27" "MeV/"c rSup { size 8{2} } \) c rSup { size 8{2} } ="938" "." "27"" MeV"} {}

It is useful to note that 1 u of mass converted to energy produces 931.5 MeV, or

1 u = 931.5 MeV/ c 2 . size 12{"1 u"="931" "." 5" MeV/"c rSup { size 8{2} } } {}

All properties of a nucleus are determined by the number of protons and neutrons it has. A specific combination of protons and neutrons is called a nuclide    and is a unique nucleus. The following notation is used to represent a particular nuclide:

Z A X N , size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } } {}

where the symbols A size 12{A} {} , X size 12{X} {} , Z size 12{Z} {} , and N size 12{N} {} are defined as follows: The number of protons in a nucleus is the atomic number     Z size 12{Z} {} , as defined in Medical Applications of Nuclear Physics . X is the symbol for the element , such as Ca for calcium. However, once Z size 12{Z} {} is known, the element is known; hence, Z size 12{Z} {} and X are redundant. For example, Z = 20 size 12{Z="20"} {} is always calcium, and calcium always has Z = 20 size 12{Z="20"} {} . N size 12{N} {} is the number of neutrons in a nucleus. In the notation for a nuclide, the subscript N size 12{N} {} is usually omitted. The symbol A size 12{A} {} is defined as the number of nucleons or the total number of protons and neutrons ,

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask