<< Chapter < Page Chapter >> Page >

But there are limits to Bohr’s theory. It cannot be applied to multielectron atoms, even one as simple as a two-electron helium atom. Bohr’s model is what we call semiclassical . The orbits are quantized (nonclassical) but are assumed to be simple circular paths (classical). As quantum mechanics was developed, it became clear that there are no well-defined orbits; rather, there are clouds of probability. Bohr’s theory also did not explain that some spectral lines are doublets (split into two) when examined closely. We shall examine many of these aspects of quantum mechanics in more detail, but it should be kept in mind that Bohr did not fail. Rather, he made very important steps along the path to greater knowledge and laid the foundation for all of atomic physics that has since evolved.

Phet explorations: models of the hydrogen atom

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Models of the Hydrogen Atom

Section summary

  • The planetary model of the atom pictures electrons orbiting the nucleus in the way that planets orbit the sun. Bohr used the planetary model to develop the first reasonable theory of hydrogen, the simplest atom. Atomic and molecular spectra are quantized, with hydrogen spectrum wavelengths given by the formula
    1 λ = R 1 n f 2 1 n i 2 , size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}
    where λ size 12{λ} {} is the wavelength of the emitted EM radiation and R size 12{R} {} is the Rydberg constant, which has the value
    R = 1.097 × 10 7 m −1 .
  • The constants n i size 12{n rSub { size 8{i} } } {} and n f size 12{n rSub { size 8{f} } } {} are positive integers, and n i must be greater than n f size 12{n rSub { size 8{f} } } {} .
  • Bohr correctly proposed that the energy and radii of the orbits of electrons in atoms are quantized, with energy for transitions between orbits given by
    Δ E = hf = E i E f , size 12{ΔE= ital "hf"=E rSub { size 8{i} } - E rSub { size 8{f} } } {}
    where Δ E size 12{ΔE} {} is the change in energy between the initial and final orbits and hf size 12{ ital "hf"} {} is the energy of an absorbed or emitted photon. It is useful to plot orbital energies on a vertical graph called an energy-level diagram.
  • Bohr proposed that the allowed orbits are circular and must have quantized orbital angular momentum given by
    L = m e vr n = n h 2 π n = 1, 2, 3 … ,
    where L size 12{L} {} is the angular momentum, r n size 12{r rSub { size 8{n} } } {} is the radius of the n th size 12{n"th"} {} orbit, and h size 12{h} {} is Planck’s constant. For all one-electron (hydrogen-like) atoms, the radius of an orbit is given by
    r n = n 2 Z a B (allowed orbits n = 1, 2, 3, ...),
    Z size 12{Z} {} is the atomic number of an element (the number of electrons is has when neutral) and a B size 12{a rSub { size 8{B} } } {} is defined to be the Bohr radius, which is
    a B = h 2 4 π 2 m e kq e 2 = 0.529 × 10 10 m . size 12{a rSub { size 8{B} } = { {h rSup { size 8{2} } } over {4π rSup { size 8{2} } m rSub { size 8{e} } ital "kq" rSub { size 8{e} } rSup { size 8{2} } } } =0 "." "529" times "10" rSup { size 8{ - "10"} } " m" "." } {}
  • Furthermore, the energies of hydrogen-like atoms are given by
    E n = Z 2 n 2 E 0 n = 1, 2, 3 ... , size 12{ left (n=1, 2, 3 "." "." "." right )} {}
    where E 0 size 12{E rSub { size 8{0} } } {} is the ground-state energy and is given by
    E 0 = 2 q e 4 m e k 2 h 2 = 13.6 eV. size 12{E rSub { size 8{0} } = { {2π rSup { size 8{2} } q rSub { size 8{e} } rSup { size 8{4} } m rSub { size 8{e} } k rSup { size 8{2} } } over {h rSup { size 8{2} } } } ="13" "." 6" eV"} {}
    Thus, for hydrogen,
    E n = 13.6 eV n 2 size 12{E rSub { size 8{n} } = - { {"13" "." 6" eV"} over {n rSup { size 8{2} } } } } {} n = 1, 2, 3 ... . size 12{ left (n=1, 2, 3 "." "." "." right ) "." } {}
  • The Bohr Theory gives accurate values for the energy levels in hydrogen-like atoms, but it has been improved upon in several respects.

Conceptual questions

How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the correspondence principle applies here.

Got questions? Get instant answers now!

Questions & Answers

full meaning of GPS system
Anaele Reply
how to prove that Newton's law of universal gravitation F = GmM ______ R²
Kaka Reply
sir dose it apply to the human system
Olubukola Reply
prove that the centrimental force Fc= M1V² _________ r
Kaka Reply
prove that centripetal force Fc = MV² ______ r
how lesers can transmit information
mitul Reply
griffts bridge derivative
Ganesh Reply
below me
please explain; when a glass rod is rubbed with silk, it becomes positive and the silk becomes negative- yet both attracts dust. does dust have third types of charge that is attracted to both positive and negative
Timothy Reply
what is a conductor
below me
why below you
no....I said below me ...... nothing below .....ok?
dust particles contains both positive and negative charge particles
corona charge can verify
when pressure increases the temperature remain what?
Ibrahim Reply
remains the temperature
what is frequency
Mbionyi Reply
define precision briefly
Sujitha Reply
CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.
hope this helps
what's critical angle
Mahmud Reply
The Critical Angle Derivation So the critical angle is defined as the angle of incidence that provides an angle of refraction of 90-degrees. Make particular note that the critical angle is an angle of incidence value. For the water-air boundary, the critical angle is 48.6-degrees.
dude.....next time Google it
okay whatever
pls who can give the definition of relative density?
the ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
What is momentum
aliyu Reply
mass ×velocity
it is the product of mass ×velocity of an object
how do I highlight a sentence]p? I select the sentence but get options like copy or web search but no highlight. tks. src
Sean Reply
then you can edit your work anyway you want
Wat is the relationship between Instataneous velocity
Oyinlusi Reply
Instantaneous velocity is defined as the rate of change of position for a time interval which is almost equal to zero
Practice Key Terms 7

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?