<< Chapter < Page Chapter >> Page >
A person is observing a moving ship from the shore. Another person is on top of ship’s mast. The person in the ship drops binoculars and sees it dropping straight. The person on the shore sees the binoculars taking a curved trajectory.
Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving forward with the ship. Both observers see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different relative to the two observers. (The ship is shown moving rather fast to emphasize the effect.)

Calculating relative velocity: an airline passenger drops a coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

A person standing on ground is observing an airplane. Inside the airplane a woman is sitting on seat. The airplane is moving in the right direction. The woman drops the coin which is vertically downwards for her but the person on ground sees the coin moving horizontally towards right.
The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final velocity can be found using the equation:

v y 2 = v 0 y 2 2 g ( y y 0 ) . size 12{v rSub { size 8{y} rSup { size 8{2} } } =v rSub { size 8{0y} rSup { size 8{2} } } - 2g \( y - y rSub { size 8{0} } \) "."} {}

Substituting known values into the equation, we get

v y 2 = 0 2 2 ( 9 . 80 m/s 2 ) ( 1 . 50 m 0 m ) = 29 . 4 m 2 /s 2 size 12{v rSub { size 8{y} rSup { size 8{2} } } =0 rSup { size 8{2} } - 2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( - 1 "." "50"" m" - 0" m" \) ="29" "." 4" m" rSup { size 8{2} } "/s" rSup { size 8{2} } } {}

yielding

v y = 5 . 42 m/s. size 12{v rSub { size 8{y} } = - 5 "." "42"" m/s."} {}

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial horizontal velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the final vertical velocity for the coin relative to the ground is v y = 5.42 m/s , the same as found in part (a). In contrast to part (a), there now is a horizontal component of the velocity. However, since there is no horizontal acceleration, the initial and final horizontal velocities are the same and v x = 260 m/s size 12{"v subx =260 m/s"} {} . The x - and y -components of velocity can be combined to find the magnitude of the final velocity:

v = v x 2 + v y 2 . size 12{v= sqrt {v rSub { size 8{x} rSup { size 8{2} } } +v rSub { size 8{y} rSup { size 8{2} } } } "."} {}

Thus,

v = ( 260 m/s ) 2 + ( 5 . 42 m/s ) 2 size 12{v= sqrt { \( "260"" m/s" \) rSup { size 8{2} } + \( - 5 "." "42"" m/s" \) rSup { size 8{2} } } } {}

yielding

v = 260 . 06 m/s. size 12{v="260" "." "06"" m/s."} {}

The direction is given by:

θ = tan 1 ( v y / v x ) = tan 1 ( 5 . 42 / 260 ) size 12{θ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{y} } /v rSub { size 8{x} } \) ="tan" rSup { size 8{ - 1} } \( - 5 "." "42"/"260" \) } {}

so that

θ = tan 1 ( 0 . 0208 ) = 1 . 19º . size 12{θ="tan" rSup { size 8{ - 1} } \( - 0 "." "0208" \) = - 1 "." "19"º "."} {}

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the ground sees a much different motion for the coin. The plane is moving so fast horizontally to begin with that its final velocity is barely greater than the initial velocity. Once again, we see that in two dimensions, vectors do not add like ordinary numbers—the final velocity v in part (b) is not ( 260 – 5 . 42 )  m/s size 12{ \( "260 – 5" "." "42" \) " m/s"} {} ; rather, it is 260 . 06 m/s size 12{"260" "." "06 m/s"} {} . The velocity’s magnitude had to be calculated to five digits to see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on the ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except that the velocity of the plane is much larger, so that the two observers see very different paths. (See [link] .) In addition, both observers see the coin fall 1.50 m vertically, but the one on the ground also sees it move forward 144 m (this calculation is left for the reader). Thus, one observer sees a vertical path, the other a nearly horizontal path.

Questions & Answers

write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
Gabriel Reply
how does a model differ from a theory
Friday Reply
what is vector quantity
Ridwan Reply
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
Jack Reply
what's electromagnetic induction
Chinaza Reply
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
Ajayi Reply
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
Gabriel Reply
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
Gabriel Reply
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
Ademiye
yes it was an assignment question "^"represent raise to power pls
Gabriel
mu/y³ u>v²k² uk²/√u-vk please help me out
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
Imtiaz Reply
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Ademiye
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
Isaac Reply
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
Mildred Reply
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
Ademiye
method of polarization
Ajayi
What is atomic number?
Makperr Reply
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
Yinka Reply
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
Taheer Reply
why the satellite does not drop to the earth explain
Emmanuel Reply
what is a matter
Yinka
what is matter
Yinka
what is matter
Yinka
what is a matter
Yinka
I want the nuclear physics conversation
Mohamed
because space is a vacuum and anything outside the earth 🌎 can not come back without an act of force applied to it to leave the vacuum and fall down to the earth with a maximum force length of 30kcm per second
Clara
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask