<< Chapter < Page Chapter >> Page >
A person is observing a moving ship from the shore. Another person is on top of ship’s mast. The person in the ship drops binoculars and sees it dropping straight. The person on the shore sees the binoculars taking a curved trajectory.
Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving forward with the ship. Both observers see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different relative to the two observers. (The ship is shown moving rather fast to emphasize the effect.)

Calculating relative velocity: an airline passenger drops a coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

A person standing on ground is observing an airplane. Inside the airplane a woman is sitting on seat. The airplane is moving in the right direction. The woman drops the coin which is vertically downwards for her but the person on ground sees the coin moving horizontally towards right.
The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final velocity can be found using the equation:

v y 2 = v 0 y 2 2 g ( y y 0 ) . size 12{v rSub { size 8{y} rSup { size 8{2} } } =v rSub { size 8{0y} rSup { size 8{2} } } - 2g \( y - y rSub { size 8{0} } \) "."} {}

Substituting known values into the equation, we get

v y 2 = 0 2 2 ( 9 . 80 m/s 2 ) ( 1 . 50 m 0 m ) = 29 . 4 m 2 /s 2 size 12{v rSub { size 8{y} rSup { size 8{2} } } =0 rSup { size 8{2} } - 2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( - 1 "." "50"" m" - 0" m" \) ="29" "." 4" m" rSup { size 8{2} } "/s" rSup { size 8{2} } } {}

yielding

v y = 5 . 42 m/s. size 12{v rSub { size 8{y} } = - 5 "." "42"" m/s."} {}

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial horizontal velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the final vertical velocity for the coin relative to the ground is v y = 5.42 m/s , the same as found in part (a). In contrast to part (a), there now is a horizontal component of the velocity. However, since there is no horizontal acceleration, the initial and final horizontal velocities are the same and v x = 260 m/s size 12{"v subx =260 m/s"} {} . The x - and y -components of velocity can be combined to find the magnitude of the final velocity:

v = v x 2 + v y 2 . size 12{v= sqrt {v rSub { size 8{x} rSup { size 8{2} } } +v rSub { size 8{y} rSup { size 8{2} } } } "."} {}

Thus,

v = ( 260 m/s ) 2 + ( 5 . 42 m/s ) 2 size 12{v= sqrt { \( "260"" m/s" \) rSup { size 8{2} } + \( - 5 "." "42"" m/s" \) rSup { size 8{2} } } } {}

yielding

v = 260 . 06 m/s. size 12{v="260" "." "06"" m/s."} {}

The direction is given by:

θ = tan 1 ( v y / v x ) = tan 1 ( 5 . 42 / 260 ) size 12{θ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{y} } /v rSub { size 8{x} } \) ="tan" rSup { size 8{ - 1} } \( - 5 "." "42"/"260" \) } {}

so that

θ = tan 1 ( 0 . 0208 ) = 1 . 19º . size 12{θ="tan" rSup { size 8{ - 1} } \( - 0 "." "0208" \) = - 1 "." "19"º "."} {}

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the ground sees a much different motion for the coin. The plane is moving so fast horizontally to begin with that its final velocity is barely greater than the initial velocity. Once again, we see that in two dimensions, vectors do not add like ordinary numbers—the final velocity v in part (b) is not ( 260 – 5 . 42 )  m/s size 12{ \( "260 – 5" "." "42" \) " m/s"} {} ; rather, it is 260 . 06 m/s size 12{"260" "." "06 m/s"} {} . The velocity’s magnitude had to be calculated to five digits to see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on the ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except that the velocity of the plane is much larger, so that the two observers see very different paths. (See [link] .) In addition, both observers see the coin fall 1.50 m vertically, but the one on the ground also sees it move forward 144 m (this calculation is left for the reader). Thus, one observer sees a vertical path, the other a nearly horizontal path.

Questions & Answers

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
Collins Reply
What is thermal heat all about
Abel Reply
why uniform circular motion is called a periodic motion?.
Boniface Reply
when a train start from A & it returns at same station A . what is its acceleration?
Mwdan Reply
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
Worku Reply
what are the types of radioactivity
Worku
what is static friction
Golu Reply
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
Muhammed Reply
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
Eboh Reply
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
Subi Reply
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
yusuf Reply
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
syed Reply
definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
please send the answer
Boniface
the range of objects and phenomena studied in physics is
Bethel Reply
I don't know please give the answer
Boniface
Practice Key Terms 5

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask