<< Chapter < Page Chapter >> Page >
  • Understand the rules of vector addition and subtraction using analytical methods.
  • Apply analytical methods to determine vertical and horizontal component vectors.
  • Apply analytical methods to determine the magnitude and direction of a resultant vector.

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and protractor of graphical methods. Part of the graphical technique is retained, because vectors are still represented by arrows for easy visualization. However, analytical methods are more concise, accurate, and precise than graphical methods, which are limited by the accuracy with which a drawing can be made. Analytical methods are limited only by the accuracy and precision with which physical quantities are known.

Resolving a vector into perpendicular components

Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular directions are independent. We very often need to separate a vector into perpendicular components. For example, given a vector like A size 12{A} {} in [link] , we may wish to find which two perpendicular vectors, A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} , add to produce it.

In the given figure a dotted vector A sub x is drawn from the origin along the x axis. From the head of the vector A sub x another vector A sub y is drawn in the upward direction. Their resultant vector A is drawn from the tail of the vector A sub x to the head of the vector A sub y at an angle theta from the x axis. On the graph a vector A, inclined at an angle theta with x axis is shown. Therefore vector A is the sum of the vectors A sub x and A sub y.
The vector A size 12{A} {} , with its tail at the origin of an x , y -coordinate system, is shown together with its x - and y -components, A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} . These vectors form a right triangle. The analytical relationships among these vectors are summarized below.

A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} are defined to be the components of A size 12{A} {} along the x - and y -axes. The three vectors A size 12{A} {} , A x size 12{A rSub { size 8{x} } } {} , and A y size 12{A rSub { size 8{y} } } {} form a right triangle:

A x  + A y  = A . size 12{A rSub { size 8{x} } bold " + A" rSub { size 8{y} } bold " = A."} {}

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include both magnitude and direction). The relationship does not apply for the magnitudes alone. For example, if A x = 3 m size 12{A rSub { size 8{x} } } {} east, A y = 4 m size 12{A rSub { size 8{y} } } {} north, and A = 5 m size 12{A} {} north-east, then it is true that the vectors A x  + A y  = A size 12{A rSub { size 8{x} } bold " + A" rSub { size 8{y} } bold " = A"} {} . However, it is not true that the sum of the magnitudes of the vectors is also equal. That is,

3 m + 4 m   5 m alignl { stack { size 12{"3 M + 4 M "<>" 5 M"} {} # {}} } {}

Thus,

A x + A y A size 12{A rSub { size 8{x} } +A rSub { size 8{y} }<>A} {}

If the vector A size 12{A} {} is known, then its magnitude A size 12{A} {} (its length) and its angle θ size 12{θ} {} (its direction) are known. To find A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} , its x - and y -components, we use the following relationships for a right triangle.

A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {}

and

A y = A sin θ . size 12{A rSub { size 8{y} } =A"sin"θ"."} {}
]A dotted vector A sub x whose magnitude is equal to A cosine theta is drawn from the origin along the x axis. From the head of the vector A sub x another vector A sub y whose magnitude is equal to A sine theta is drawn in the upward direction. Their resultant vector A is drawn from the tail of the vector A sub x to the head of the vector A-y at an angle theta from the x axis. Therefore vector A is the sum of the vectors A sub x and A sub y.
The magnitudes of the vector components A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} can be related to the resultant vector A size 12{A} {} and the angle θ size 12{θ} {} with trigonometric identities. Here we see that A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {} and A y = A sin θ size 12{A rSub { size 8{y} } =A"sin"θ} {} .

Suppose, for example, that A size 12{A} {} is the vector representing the total displacement of the person walking in a city considered in Kinematics in Two Dimensions: An Introduction and Vector Addition and Subtraction: Graphical Methods .

In the given figure a vector A of magnitude ten point three blocks is inclined at an angle twenty nine point one degrees to the positive x axis. The horizontal component A sub x of vector A is equal to A cosine theta which is equal to ten point three blocks multiplied to cosine twenty nine point one degrees which is equal to nine blocks east. Also the vertical component A sub y of vector A is equal to A sin theta is equal to ten point three blocks multiplied to sine twenty nine point one degrees,  which is equal to five point zero blocks north.
We can use the relationships A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {} and A y = A sin θ size 12{A rSub { size 8{y} } =A"sin"θ} {} to determine the magnitude of the horizontal and vertical component vectors in this example.

Then A = 10.3 size 12{A} {} blocks and θ = 29.1º size 12{"29.1º"} , so that

A x = A cos θ = ( 10.3 blocks ) ( cos 29.1º ) = 9.0 blocks size 12{}
A y = A sin θ = ( 10.3 blocks ) ( sin 29.1º ) = 5.0 blocks . size 12{""}

Calculating a resultant vector

If the perpendicular components A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} of a vector A size 12{A} {} are known, then A size 12{A} {} can also be found analytically. To find the magnitude A size 12{A} {} and direction θ size 12{θ} {} of a vector from its perpendicular components A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} , we use the following relationships:

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask