<< Chapter < Page Chapter >> Page >

Multiplication of vectors and scalars

If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we would walk ×  27 . 5 m size 12{"3 " times " 27" "." "5 m"} {} , or 82.5 m, in a direction 66 . 0 º size 12{"66" "." 0 { size 12{º} } } {} north of east. This is an example of multiplying a vector by a positive scalar    . Notice that the magnitude changes, but the direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector’s magnitude and gives the new vector the opposite direction. For example, if you multiply by –2, the magnitude doubles but the direction changes. We can summarize these rules in the following way: When vector A size 12{A} {} is multiplied by a scalar c size 12{c} {} ,

  • the magnitude of the vector becomes the absolute value of c size 12{c} {} A size 12{A} {} ,
  • if c size 12{A} {} is positive, the direction of the vector does not change,
  • if c size 12{A} {} is negative, the direction is reversed.

In our case, c = 3 size 12{c=3} and A = 27.5 m size 12{"A= 27.5 m"} . Vectors are multiplied by scalars in many situations. Note that division is the inverse of multiplication. For example, dividing by 2 is the same as multiplying by the value (1/2). The rules for multiplication of vectors by scalars are the same for division; simply treat the divisor as a scalar between 0 and 1.

Resolving a vector into components

In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we will need to do the opposite. We will need to take a single vector and find what other vectors added together produce it. In most cases, this involves determining the perpendicular components of a single vector, for example the x - and y -components, or the north-south and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction 29 .0º size 12{"29" "." 0º} } {} north of east and want to find out how many blocks east and north had to be walked. This method is called finding the components (or parts) of the displacement in the east and north directions, and it is the inverse of the process followed to find the total displacement. It is one example of finding the components of a vector. There are many applications in physics where this is a useful thing to do. We will see this soon in Projectile Motion , and much more when we cover forces in Dynamics: Newton’s Laws of Motion . Most of these involve finding components along perpendicular axes (such as north and east), so that right triangles are involved. The analytical techniques presented in Vector Addition and Subtraction: Analytical Methods are ideal for finding vector components.

Phet explorations: maze game

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.

Maze Game


  • The graphical method of adding vectors A size 12{A} {} and B size 12{B} {} involves drawing vectors on a graph and adding them using the head-to-tail method. The resultant vector R size 12{A} {} is defined such that A + B = R . The magnitude and direction of R size 12{A} {} are then determined with a ruler and protractor, respectively.
  • The graphical method of subtracting vector B from A involves adding the opposite of vector B , which is defined as B size 12{ - B} {} . In this case, A B = A + ( –B ) = R . Then, the head-to-tail method of addition is followed in the usual way to obtain the resultant vector R .
  • Addition of vectors is commutative    such that A + B = B + A size 12{"A + B = B + A"} {} .
  • The head-to-tail method    of adding vectors involves drawing the first vector on a graph and then placing the tail of each subsequent vector at the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to the head of the final vector.
  • If a vector A size 12{A} {} is multiplied by a scalar quantity c size 12{A} {} , the magnitude of the product is given by cA size 12{ ital "cA"} {} . If c size 12{c} {} is positive, the direction of the product points in the same direction as A size 12{A} {} ; if c size 12{c} {} is negative, the direction of the product points in the opposite direction as A size 12{A} {} .

Questions & Answers

a thick glass cup cracks when hot liquid is poured into it suddenly
Aiyelabegan Reply
because of the sudden contraction that takes place.
railway crack has gap between the end of each length because?
Aiyelabegan Reply
For expansion
Please i really find it dificult solving equations on physic, can anyone help me out?
Big Reply
what is the equation?
fersnels biprism spectrometer how to determined
Bala Reply
how to study the hall effect to calculate the hall effect coefficient of the given semiconductor have to calculate the carrier density by carrier mobility.
what is the difference between atomic physics and momentum
Nana Reply
find the dimensional equation of work,power,and moment of a force show work?
Emmanuel Reply
What's sup guys
cul and you all
cool you bro
so what is going on here
hello peeps
Michelson Morley experiment
Riya Reply
how are you
am good
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
how 2.68
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
the answer is 9.2m/s
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
the answer is 0.03n according to the 3rd law of motion if the are in same direction meaning they interact each other.
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
thanks jare
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
what is physic
zalmia Reply
please gave me answar
Study of matter and energy
physics is the science of matter and energy and their interactions
physics is the technology behind air and matter
hi sir
how easy to understanding physics sir
Easy to learn
31. Calculate the initial (from rest) acceleration of a proton in a 5.00×106 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
Catina Reply
A tennis ball is projected at an angle and attains a range of 78. if the velocity is 30metres per second, calculate the angle
what friction
Wisdom Reply
question on friction
the rubbing of one object or surface against another.
momentum is the product of mass and it's velocity.
what are bioelements?
Friction is a force that exist between two objects in contact. e.g. friction between road and car tires.

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?