<< Chapter < Page Chapter >> Page >

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor .

In part a, a vector of magnitude of nine units and making an angle theta is equal to zero degree is drawn from the origin and along the positive direction of x axis.

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector at the head of the first vector .

In part b, a vector of magnitude of nine units and making an angle theta is equal to zero degree is drawn from the origin and along the positive direction of x axis. Then a vertical vector from the head of the horizontal vector is drawn.

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have only two vectors, so we have finished placing arrows tip to tail .

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector . This is the resultant    , or the sum, of the other vectors.

In part c, a vector D of magnitude ten point three is drawn from the tail of the horizontal vector at an angle theta is equal to twenty nine point one degrees from the positive direction of the x axis. The head of the vector D meets the head of the vertical vector. A scale is shown parallel to the vector D to measure its length. Also a protractor is shown to measure the inclination of the vector D.

Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we will use the Pythagorean theorem to determine this length.)

Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the precision of the measuring tools. It is valid for any number of vectors.

Adding vectors graphically using the head-to-tail method: a woman takes a walk

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths (displacements) on a flat field. First, she walks 25.0 m in a direction 49.0º size 12{"49" "." "0º"} {} north of east. Then, she walks 23.0 m heading 15.0º size 12{"15" "." "º°"} {} north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first A size 12{A} {} , the second B size 12{B} {} , and the third C size 12{C} {} , making the lengths proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail method outlined above will give a way to determine the magnitude and direction of the resultant displacement, denoted R size 12{R} {} .

Solution

(1) Draw the three displacement vectors.

On the graph a vector of magnitude twenty three meters and inclined above the x axis at an angle theta-b equal to fifteen degrees is shown. This vector is labeled as B.

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

In this figure a vector A with a positive slope is drawn from the origin. Then from the head of the vector A another vector B with positive slope is drawn and then another vector C with negative slope from the head of the vector B is drawn which cuts the x axis.

(3) Draw the resultant vector, R size 12{R} {} .

In this figure a vector A with a positive slope is drawn from the origin. Then from the head of the vector A another vector B with positive slope is drawn and then another vector C with negative slope from the head of the vector B is drawn which cuts the x axis. From the tail of the vector A a vector R of magnitude of fifty point zero meters and with negative slope of seven degrees is drawn. The head of this vector R meets the head of the vector C. The vector R is known as the resultant vector.

(4) Use a ruler to measure the magnitude of R size 12{R} {} , and a protractor to measure the direction of R size 12{R} {} . While the direction of the vector can be specified in many ways, the easiest way is to measure the angle between the vector and the nearest horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the protractor upside down and measure the angle between the eastward axis and the vector.

In this figure a vector A with a positive slope is drawn from the origin. Then from the head of the vector A another vector B with positive slope is drawn and then another vector C with negative slope from the head of the vector B is drawn which cuts the x axis. From the tail of the vector A a vector R of magnitude of fifty meter and with negative slope of seven degrees is drawn. The head of this vector R meets the head of the vector C. The vector R is known as the resultant vector. A ruler is placed along the vector R to measure it. Also there is a protractor to measure the angle.

In this case, the total displacement R size 12{R} {} is seen to have a magnitude of 50.0 m and to lie in a direction 7.0º size 12{7 "." 0°} {} south of east. By using its magnitude and direction, this vector can be expressed as R = 50.0 m size 12{R" = 50" "." "0 m"} {} and θ = 7 . size 12{θ=7 "." "0°"} {} south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that the resultant is independent of the order in which the vectors are added. Therefore, we could add the vectors in any order as illustrated in [link] and we will still get the same solution.

Questions & Answers

the meaning of phrase in physics
Chovwe Reply
is the meaning of phrase in physics
Chovwe
write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
Gabriel Reply
how does a model differ from a theory
Friday Reply
what is vector quantity
Ridwan Reply
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
Jack Reply
what's electromagnetic induction
Chinaza Reply
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
Ajayi Reply
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
Gabriel Reply
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
Gabriel Reply
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
Ademiye
yes it was an assignment question "^"represent raise to power pls
Gabriel
mu/y³ u>v²k² uk²/√u-vk please help me out
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
Imtiaz Reply
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Ademiye
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
Isaac Reply
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
Mildred Reply
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
Ademiye
method of polarization
Ajayi
What is atomic number?
Makperr Reply
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
Yinka Reply
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
Taheer Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask