# 3.2 Vector addition and subtraction: graphical methods  (Page 3/15)

 Page 3 / 15

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in every case and is an important characteristic of vectors. Vector addition is commutative    . Vectors can be added in any order.

$\mathbf{\text{A}}+\mathbf{\text{B}}=\mathbf{\text{B}}+\mathbf{\text{A}}\text{.}$

(This is true for the addition of ordinary numbers as well—you get the same result whether you add $\mathbf{\text{2}}+\mathbf{\text{3}}$ or $\mathbf{\text{3}}+\mathbf{\text{2}}$ , for example).

## Vector subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract $\mathbf{\text{B}}$ from $\mathbf{\text{A}}$ , written $\mathbf{\text{A}}–\mathbf{\text{B}}$ , we must first define what we mean by subtraction. The negative of a vector $\mathbf{\text{B}}$ is defined to be $\mathbf{\text{–B}}$ ; that is, graphically the negative of any vector has the same magnitude but the opposite direction , as shown in [link] . In other words, $\mathbf{\text{B}}$ has the same length as $\mathbf{\text{–B}}$ , but points in the opposite direction. Essentially, we just flip the vector so it points in the opposite direction.

The subtraction of vector $\mathbf{\text{B}}$ from vector $\mathbf{\text{A}}$ is then simply defined to be the addition of $\mathbf{\text{–B}}$ to $\mathbf{\text{A}}$ . Note that vector subtraction is the addition of a negative vector. The order of subtraction does not affect the results.

This is analogous to the subtraction of scalars (where, for example, ). Again, the result is independent of the order in which the subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the following example illustrates.

## Subtracting vectors graphically: a woman sailing a boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction $\text{66.0º}$ north of east from her current location, and then travel 30.0 m in a direction $\text{112º}$ north of east (or $\text{22.0º}$ west of north). If the woman makes a mistake and travels in the opposite direction for the second leg of the trip, where will she end up? Compare this location with the location of the dock.

Strategy

We can represent the first leg of the trip with a vector $\mathbf{\text{A}}$ , and the second leg of the trip with a vector $\mathbf{\text{B}}$ . The dock is located at a location $\mathbf{\text{A}}+\mathbf{\text{B}}$ . If the woman mistakenly travels in the opposite direction for the second leg of the journey, she will travel a distance $B$ (30.0 m) in the direction $180º–112º=68º$ south of east. We represent this as $\mathbf{\text{–B}}$ , as shown below. The vector $\mathbf{\text{–B}}$ has the same magnitude as $\mathbf{\text{B}}$ but is in the opposite direction. Thus, she will end up at a location $\mathbf{\text{A}}+\left(\mathbf{\text{–B}}\right)$ , or $\mathbf{\text{A}}–\mathbf{\text{B}}$ .

We will perform vector addition to compare the location of the dock, , with the location at which the woman mistakenly arrives, .

Solution

(1) To determine the location at which the woman arrives by accident, draw vectors $\mathbf{\text{A}}$ and $\mathbf{\text{–B}}$ .

(2) Place the vectors head to tail.

(3) Draw the resultant vector $\mathbf{R}$ .

(4) Use a ruler and protractor to measure the magnitude and direction of $\mathbf{R}$ .

In this case, $R=\text{23}\text{.}\text{0 m}$ and $\theta =7\text{.}\text{5º}$ south of east.

(5) To determine the location of the dock, we repeat this method to add vectors $\mathbf{\text{A}}$ and $\mathbf{\text{B}}$ . We obtain the resultant vector $\mathbf{\text{R}}\text{'}$ :

In this case and  north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the second leg of the trip.

Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of subtracting vectors works the same as for addition.

explain and draw how to measure length when using ruler, micrometer screw gauge and vernnier calliper
Calculate the average velocity in time interval 6sec to 12sec and determine the instantaneous velocity
the force is not constant in this case of tow car collide for short period of time ..why is the force is not constant?
hmmm
Fortune
calculate the average velocity in time interval 6sec to 12sec ad determine the instantaneous velocity
Lekiisi
meaning of the term si units
what what causes electric current
Chali
what what causes electric current
Chali
Charges(electron)
Caleb
Systeme international unitq@1qa@aaq
Caleb
Correct one international system of units.
Caleb
electric dynamo
albert
Electric dynamo is the sources of electric magnetic forces which utilize electromagnetic induction.
albert
A stone is dropped down a well, if it take 5 seconds to reach the water, how dip is the well
an aircraft at as steady velocity of 70m/so eastwards at a height of 800me drops a package of supplies .a, how long will it take for the package to rich the ground? b, how fast will it be going as it lands?
what is hypothesis theory law
Tamba
physics is the science of measurement
What is physics
what is physics
Obaro
Good question! Physics is the study of the nature world . Does this help?
Yonn
physics is the study of matter in relations to energy.
Enoch
physics is the science of measurements
Jide
physics is a science concern with nature and properties of matter and energy
Ugomma
what is a parallelogram law of motion?
Nancy
describe how you would find the area of an irregular shaped body?
Chali
Definition for physics
It deal with matter and relation to energy
Soughie
physics is the Study of matter in relation to energy.
albert
physics is a natural science that study matter its behaviour and relation to energy.
mohammed
physic tells us more about quantities and measurement also
Kelly
life as we know it that can be measured and calculated
Jesus
what is a reference frame
what is anatomy in relation to physics
how does half life exist
The amount of time it takes a radioactive isotope to decay into a stable isotope is different for each radioactive isotope, and is characterized by its “half-life”. An isotope's half-life is the amount of time it takes for half the number of atoms of that isotope to decay to another isotope.
Nardine
what is the difference between Mass and weight
Pjustin
mass is constant while weight varies. unit of mass is kg, unit of weight is newton
Faith
how can a coin float in water and what principle governs it
in my opinion that work of surface tension but restrictions on coin is that coin do not break surface energy of molecules but some days before scientists prove that's another types of force
Aman
which force hold floating coins together thats my confusion
Aman
how can a coin float in water and what principle governs it
why many of the coin floating in water