<< Chapter < Page Chapter >> Page >
The picture shows binoculars with prisms inside. The light through one of the object lenses enters through the first prism and suffers total internal reflection and then falls on the second prism and gets total internally reflected and emerges out through one of the eyepiece lenses.
These binoculars employ corner reflectors with total internal reflection to get light to the observer’s eyes.

The sparkle of diamonds

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials. The critical angle for a diamond-to-air surface is only 24 . size 12{"24" "." 4°} {} , and so when light enters a diamond, it has trouble getting back out. (See [link] .) Although light freely enters the diamond, it can exit only if it makes an angle less than 24 . size 12{"24" "." 4°} {} . Facets on diamonds are specifically intended to make this unlikely, so that the light can exit only in certain places. Good diamonds are very clear, so that the light makes many internal reflections and is concentrated at the few places it can exit—hence the sparkle. (Zircon is a natural gemstone that has an exceptionally large index of refraction, but not as large as diamond, so it is not as highly prized. Cubic zirconia is manufactured and has an even higher index of refraction ( 2.17 size 12{»2 "." "17"} {} ), but still less than that of diamond.) The colors you see emerging from a sparkling diamond are not due to the diamond’s color, which is usually nearly colorless. Those colors result from dispersion, the topic of Dispersion: The Rainbow and Prisms . Colored diamonds get their color from structural defects of the crystal lattice and the inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia produces around 90% of the world’s pink, red, champagne, and cognac diamonds, while around 50% of the world’s clear diamonds come from central and southern Africa.

A light ray falls onto one of the faces of a diamond, gets refracted, falls on another face and gets totally internally reflected, and this reflected ray further undergoes multiple reflections when it falls on other faces.
Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets are placed so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle.

Phet explorations: bending light

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

Bending Light

Section summary

  • The incident angle that produces an angle of refraction of 90º size 12{"90"°} {} is called critical angle.
  • Total internal reflection is a phenomenon that occurs at the boundary between two mediums, such that if the incident angle in the first medium is greater than the critical angle, then all the light is reflected back into that medium.
  • Fiber optics involves the transmission of light down fibers of plastic or glass, applying the principle of total internal reflection.
  • Endoscopes are used to explore the body through various orifices or minor incisions, based on the transmission of light through optical fibers.
  • Cladding prevents light from being transmitted between fibers in a bundle.
  • Diamonds sparkle due to total internal reflection coupled with a large index of refraction.

Conceptual questions

A ring with a colorless gemstone is dropped into water. The gemstone becomes invisible when submerged. Can it be a diamond? Explain.

Got questions? Get instant answers now!

A high-quality diamond may be quite clear and colorless, transmitting all visible wavelengths with little absorption. Explain how it can sparkle with flashes of brilliant color when illuminated by white light.

Got questions? Get instant answers now!

Is it possible that total internal reflection plays a role in rainbows? Explain in terms of indices of refraction and angles, perhaps referring to [link] . Some of us have seen the formation of a double rainbow. Is it physically possible to observe a triple rainbow?

A double rainbow with spectacular bands of seven colors.
Double rainbows are not a very common observance. (credit: InvictusOU812, Flickr)

Got questions? Get instant answers now!

The most common type of mirage is an illusion that light from faraway objects is reflected by a pool of water that is not really there. Mirages are generally observed in deserts, when there is a hot layer of air near the ground. Given that the refractive index of air is lower for air at higher temperatures, explain how mirages can be formed.

Got questions? Get instant answers now!


Verify that the critical angle for light going from water to air is 48.6º size 12{"48" "." 6°} {} , as discussed at the end of [link] , regarding the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air.

Got questions? Get instant answers now!

(a) At the end of [link] , it was stated that the critical angle for light going from diamond to air is 24 . size 12{"24" "." 4°} {} . Verify this. (b) What is the critical angle for light going from zircon to air?

Got questions? Get instant answers now!

An optical fiber uses flint glass clad with crown glass. What is the critical angle?

66 . size 12{"66" "." 3°} {}

Got questions? Get instant answers now!

At what minimum angle will you get total internal reflection of light traveling in water and reflected from ice?

Got questions? Get instant answers now!

Suppose you are using total internal reflection to make an efficient corner reflector. If there is air outside and the incident angle is 45 . size 12{"45" "." 0°} {} , what must be the minimum index of refraction of the material from which the reflector is made?

> 1 . 414 size 12{>1 "." "414"} {}

Got questions? Get instant answers now!

You can determine the index of refraction of a substance by determining its critical angle. (a) What is the index of refraction of a substance that has a critical angle of 68 . size 12{"68" "." 4°} {} when submerged in water? What is the substance, based on [link] ? (b) What would the critical angle be for this substance in air?

Got questions? Get instant answers now!

A ray of light, emitted beneath the surface of an unknown liquid with air above it, undergoes total internal reflection as shown in [link] . What is the index of refraction for the liquid and its likely identification?

A light ray travels from an object placed in a denser medium n1 at 15.0 centimeter from the boundary and on hitting the boundary gets totally internally reflected with theta c as critical angle. The horizontal distance between the object and the point of incidence is 13.4 centimeters.
A light ray inside a liquid strikes the surface at the critical angle and undergoes total internal reflection.

1.50, benzene

Got questions? Get instant answers now!

A light ray entering an optical fiber surrounded by air is first refracted and then reflected as shown in [link] . Show that if the fiber is made from crown glass, any incident ray will be totally internally reflected.

The figure shows light traveling from n1 to n2 is incident on a rectangular transparent object at an angle of incidence theta 1. The angle of refraction is theta 2. On refraction, the ray falls onto the long side and gets totally internally reflected with theta 3 as the angle of incidence.
A light ray enters the end of a fiber, the surface of which is perpendicular to its sides. Examine the conditions under which it may be totally internally reflected.
Got questions? Get instant answers now!

Questions & Answers

why static friction is greater than Kinetic friction
Ali Reply
draw magnetic field pattern for two wire carrying current in the same direction
Ven Reply
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
nkombo Reply
What is the ratio of turns in the primary and secondary coils of her transformer?
How electric lines and equipotential surface are mutually perpendicular?
Abid Reply
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
Elene Reply
what Is linear momentum
Victoria Reply
why no diagrams
Blessing Reply
Describe an experiment to determine short half life
Tyson Reply
what is science
Kenedy Reply
it's a natural phenomena
please can someone help me with explanations of wave
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
Musa Reply
what is physics
Caya Reply
it is the science which we used in our daily life
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
it is branch of science which deals with study of happening in the human life
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Eden Reply
Yes, It is possible by conduction if Surface is Adiabatic
Yeah true ilwith d help of Adiabatic
what are the fundamentals qualities
Magret Reply
what is physic3
what is physic
Physics? Is a branch of science dealing with matter in relation to energy.
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
are you asking for qualities or quantities?
give examples of three dimensional frame of reference
Ekwunazor Reply
Yes the Universe itself
Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces designed as they are? What differences will dry and wet conditions make for these surfaces?
Lathan Reply
sports shoes are designed in such a way they are gripped well with your feet and their bases have and high friction surfaces, Thong shoes are for comfort, these are easily removed and light weight. these are usually low friction surfaces but in wet conditions they offer greater friction.
thong sleepers are usually used in restrooms.
Practice Key Terms 4

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?