<< Chapter < Page Chapter >> Page >
  • Describe the electric and magnetic waves as they move out from a source, such as an AC generator.
  • Explain the mathematical relationship between the magnetic field strength and the electrical field strength.
  • Calculate the maximum strength of the magnetic field in an electromagnetic wave, given the maximum electric field strength.

We can get a good understanding of electromagnetic waves    (EM) by considering how they are produced. Whenever a current varies, associated electric and magnetic fields vary, moving out from the source like waves. Perhaps the easiest situation to visualize is a varying current in a long straight wire, produced by an AC generator at its center, as illustrated in [link] .

A long straight gray wire with an A C generator at its center, functioning as a broadcast antenna for electromagnetic waves, is shown. The wave distributions at four different times are shown in four different parts. Part a of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals zero. The bottom part of the antenna is positive and the upper end of the antenna is negative. An electric field E acting upward is shown by an upward arrow. Part b of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals capital T divided by four. The antenna has no polarity marked and a wave is shown to emerge from the A C source. An electric field E acting upward as shown by an upward arrow. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown above the horizontal axis. Part c of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals capital T divided by two. The bottom part of the antenna is negative and the upper end of the antenna is positive and a wave is shown to emerge from the A C source. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown below the horizontal axis and a quarter portion of the wave is above the horizontal axis. Part d of the diagram shows a long straight gray wire with an AC generator at its center. The time is marked t equals capital T. The bottom part of the antenna is positive and the upper end of the antenna is negative. A wave is shown to emerge from the A C source. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown above the horizontal axis followed by a half wave below the horizontal axis and then again a quarter of a wave above the horizontal axis.
This long straight gray wire with an AC generator at its center becomes a broadcast antenna for electromagnetic waves. Shown here are the charge distributions at four different times. The electric field ( E size 12{E} {} ) propagates away from the antenna at the speed of light, forming part of an electromagnetic wave.

The electric field    ( E size 12{E} {} ) shown surrounding the wire is produced by the charge distribution on the wire. Both the E size 12{E} {} and the charge distribution vary as the current changes. The changing field propagates outward at the speed of light.

There is an associated magnetic field    ( B size 12{B} {} ) which propagates outward as well (see [link] ). The electric and magnetic fields are closely related and propagate as an electromagnetic wave. This is what happens in broadcast antennae such as those in radio and TV stations.

Closer examination of the one complete cycle shown in [link] reveals the periodic nature of the generator-driven charges oscillating up and down in the antenna and the electric field produced. At time t = 0 size 12{t=0} {} , there is the maximum separation of charge, with negative charges at the top and positive charges at the bottom, producing the maximum magnitude of the electric field (or E size 12{E} {} -field) in the upward direction. One-fourth of a cycle later, there is no charge separation and the field next to the antenna is zero, while the maximum E size 12{E} {} -field has moved away at speed c size 12{c} {} .

As the process continues, the charge separation reverses and the field reaches its maximum downward value, returns to zero, and rises to its maximum upward value at the end of one complete cycle. The outgoing wave has an amplitude    proportional to the maximum separation of charge. Its wavelength     λ size 12{ left (λ right )} {} is proportional to the period of the oscillation and, hence, is smaller for short periods or high frequencies. (As usual, wavelength and frequency     f size 12{ left (f right )} {} are inversely proportional.)

Electric and magnetic waves: moving together

Following Ampere’s law, current in the antenna produces a magnetic field, as shown in [link] . The relationship between E size 12{E} {} and B size 12{B} {} is shown at one instant in [link] (a). As the current varies, the magnetic field varies in magnitude and direction.

Part a of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The antenna has a current I flowing vertically upward. The bottom end of the antenna is negative and the upper end of the antenna is positive. An electric field is shown to act vertically downward. The magnetic field lines B produced in the antenna are circular in direction around the wire. Part b of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The electric field E and magnetic field B near the wire are shown perpendicular to each other. Part c of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The current is shown to flow in the antenna. The magnetic field varies with the current and propagates away from the antenna as a sine wave in the horizontal plane. The vibrations in the wave are marked as small arrows along the wave.
(a) The current in the antenna produces the circular magnetic field lines. The current ( I size 12{I} {} ) produces the separation of charge along the wire, which in turn creates the electric field as shown. (b) The electric and magnetic fields ( E size 12{E} {} and B size 12{B} {} ) near the wire are perpendicular; they are shown here for one point in space. (c) The magnetic field varies with current and propagates away from the antenna at the speed of light.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask