<< Chapter < Page Chapter >> Page >

Magnetic field produced by a current-carrying solenoid

A solenoid    is a long coil of wire (with many turns or loops, as opposed to a flat loop). Because of its shape, the field inside a solenoid can be very uniform, and also very strong. The field just outside the coils is nearly zero. [link] shows how the field looks and how its direction is given by RHR-2.

A diagram of a solenoid. The current runs up from the battery on the left side and spirals around with the solenoid wire such that the current runs upward in the front sections of the solenoid and then down the back. An illustration of the right hand rule 2 shows the thumb pointing up in the direction of the current and the fingers curling around in the direction of the magnetic field. A length wise cutaway of the solenoid shows magnetic field lines densely packed and running from the south pole to the north pole, through the solenoid. Lines outside the solenoid are spaced much farther apart and run from the north pole out around the solenoid to the south pole.
(a) Because of its shape, the field inside a solenoid of length l size 12{l} {} is remarkably uniform in magnitude and direction, as indicated by the straight and uniformly spaced field lines. The field outside the coils is nearly zero. (b) This cutaway shows the magnetic field generated by the current in the solenoid.

The magnetic field inside of a current-carrying solenoid is very uniform in direction and magnitude. Only near the ends does it begin to weaken and change direction. The field outside has similar complexities to flat loops and bar magnets, but the magnetic field strength inside a solenoid    is simply

B = μ 0 nI ( inside a solenoid ) , size 12{B=μ rSub { size 8{0} } ital "nI"` \( "inside a solenoid" \) ,} {}

where n size 12{n} {} is the number of loops per unit length of the solenoid ( n = N / l size 12{ \( n=N/l} {} , with N size 12{N} {} being the number of loops and l size 12{l} {} the length). Note that B size 12{B} {} is the field strength anywhere in the uniform region of the interior and not just at the center. Large uniform fields spread over a large volume are possible with solenoids, as [link] implies.

Calculating field strength inside a solenoid

What is the field inside a 2.00-m-long solenoid that has 2000 loops and carries a 1600-A current?

Strategy

To find the field strength inside a solenoid, we use B = μ 0 nI size 12{B=μ rSub { size 8{0} } ital "nI"} {} . First, we note the number of loops per unit length is

n = N l = 2000 2.00 m = 1000 m 1 = 10 cm 1 . size 12{n rSup { size 8{ - 1} } = { {N} over {l} } = { {"2000"} over {2 "." "00" m} } ="1000"" m" rSup { size 8{ - 1} } ="10"" cm" rSup { size 8{ - 1} } "." } {}

Solution

Substituting known values gives

B = μ 0 nI = × 10 7 T m/A 1000 m 1 1600 A = 2 .01 T.

Discussion

This is a large field strength that could be established over a large-diameter solenoid, such as in medical uses of magnetic resonance imaging (MRI). The very large current is an indication that the fields of this strength are not easily achieved, however. Such a large current through 1000 loops squeezed into a meter’s length would produce significant heating. Higher currents can be achieved by using superconducting wires, although this is expensive. There is an upper limit to the current, since the superconducting state is disrupted by very large magnetic fields.

Got questions? Get instant answers now!

There are interesting variations of the flat coil and solenoid. For example, the toroidal coil used to confine the reactive particles in tokamaks is much like a solenoid bent into a circle. The field inside a toroid is very strong but circular. Charged particles travel in circles, following the field lines, and collide with one another, perhaps inducing fusion. But the charged particles do not cross field lines and escape the toroid. A whole range of coil shapes are used to produce all sorts of magnetic field shapes. Adding ferromagnetic materials produces greater field strengths and can have a significant effect on the shape of the field. Ferromagnetic materials tend to trap magnetic fields (the field lines bend into the ferromagnetic material, leaving weaker fields outside it) and are used as shields for devices that are adversely affected by magnetic fields, including the Earth’s magnetic field.

Phet explorations: generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can use them to make a bulb light.

Generator

Section summary

  • The strength of the magnetic field created by current in a long straight wire is given by
    B = μ 0 I 2 πr ( long straight wire ) ,
    where I size 12{I} {} is the current, r size 12{r} {} is the shortest distance to the wire, and the constant μ 0 = × 10 7 T m/A size 12{μ rSub { size 8{0} } =4π times "10" rSup { size 8{ - 7} } `T cdot "m/A"} {} is the permeability of free space.
  • The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops created by it.
  • The magnetic field created by current following any path is the sum (or integral) of the fields due to segments along the path (magnitude and direction as for a straight wire), resulting in a general relationship between current and field known as Ampere’s law.
  • The magnetic field strength at the center of a circular loop is given by
    B = μ 0 I 2 R ( at center of loop ) , size 12{B= { {μ rSub { size 8{0} } I} over {2R} } " " \( "at center of loop" \) ,} {}
    where R size 12{R} {} is the radius of the loop. This equation becomes B = μ 0 nI / ( 2 R ) size 12{B=μ rSub { size 8{0} } ital "nI"/ \( 2R \) } {} for a flat coil of N size 12{N} {} loops. RHR-2 gives the direction of the field about the loop. A long coil is called a solenoid.
  • The magnetic field strength inside a solenoid is
    B = μ 0 nI ( inside a solenoid ) , size 12{B=μ rSub { size 8{0} } ital "nI"" " \( "inside a solenoid" \) ,} {}
    where n size 12{n} {} is the number of loops per unit length of the solenoid. The field inside is very uniform in magnitude and direction.

Conceptual questions

Make a drawing and use RHR-2 to find the direction of the magnetic field of a current loop in a motor (such as in [link] ). Then show that the direction of the torque on the loop is the same as produced by like poles repelling and unlike poles attracting.

Got questions? Get instant answers now!

Questions & Answers

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
Collins Reply
What is thermal heat all about
Abel Reply
why uniform circular motion is called a periodic motion?.
Boniface Reply
when a train start from A & it returns at same station A . what is its acceleration?
Mwdan Reply
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
Worku Reply
what are the types of radioactivity
Worku
what is static friction
Golu Reply
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
Muhammed Reply
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
Eboh Reply
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
Subi Reply
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
yusuf Reply
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
syed Reply
definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
please send the answer
Boniface
the range of objects and phenomena studied in physics is
Bethel Reply
I don't know please give the answer
Boniface
Practice Key Terms 9

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask