<< Chapter < Page Chapter >> Page >
  • Calculate current that produces a magnetic field.
  • Use the right hand rule 2 to determine the direction of current or the direction of magnetic field loops.

How much current is needed to produce a significant magnetic field, perhaps as strong as the Earth’s field? Surveyors will tell you that overhead electric power lines create magnetic fields that interfere with their compass readings. Indeed, when Oersted discovered in 1820 that a current in a wire affected a compass needle, he was not dealing with extremely large currents. How does the shape of wires carrying current affect the shape of the magnetic field created? We noted earlier that a current loop created a magnetic field similar to that of a bar magnet, but what about a straight wire or a toroid (doughnut)? How is the direction of a current-created field related to the direction of the current? Answers to these questions are explored in this section, together with a brief discussion of the law governing the fields created by currents.

Magnetic field created by a long straight current-carrying wire: right hand rule 2

Magnetic fields have both direction and magnitude. As noted before, one way to explore the direction of a magnetic field is with compasses, as shown for a long straight current-carrying wire in [link] . Hall probes can determine the magnitude of the field. The field around a long straight wire is found to be in circular loops. The right hand rule 2 (RHR-2) emerges from this exploration and is valid for any current segment— point the thumb in the direction of the current, and the fingers curl in the direction of the magnetic field loops created by it.

Figure a shows a vertically oriented wire with current I running from bottom to top. Magnetic field lines circle the wire counter-clockwise as view from the top. Figure b illustrates the right hand rule 2. The thumb points up with current I. The fingers curl around counterclockwise as viewed from the top.
(a) Compasses placed near a long straight current-carrying wire indicate that field lines form circular loops centered on the wire. (b) Right hand rule 2 states that, if the right hand thumb points in the direction of the current, the fingers curl in the direction of the field. This rule is consistent with the field mapped for the long straight wire and is valid for any current segment.

The magnetic field strength (magnitude) produced by a long straight current-carrying wire    is found by experiment to be

B = μ 0 I 2 πr ( long straight wire ) , size 12{B= { {μ rSub { size 8{0} } I} over {2πr} } `` \( "long straight wire" \) ,} {}

where I size 12{I} {} is the current, r size 12{r} {} is the shortest distance to the wire, and the constant μ 0 = × 10 7 T m/A is the permeability of free space    . ( μ 0 size 12{ \( μ rSub { size 8{0} } } {} is one of the basic constants in nature. We will see later that μ 0 size 12{μ rSub { size 8{0} } } {} is related to the speed of light.) Since the wire is very long, the magnitude of the field depends only on distance from the wire r size 12{r} {} , not on position along the wire.

Calculating current that produces a magnetic field

Find the current in a long straight wire that would produce a magnetic field twice the strength of the Earth’s at a distance of 5.0 cm from the wire.


The Earth’s field is about 5 . 0 × 10 5 T , and so here B size 12{B} {} due to the wire is taken to be 1 . 0 × 10 4 T . The equation B = μ 0 I 2 πr can be used to find I , since all other quantities are known.


Solving for I size 12{I} {} and entering known values gives

I = 2 π rB μ 0 = 2 π 5.0 × 10 2 m 1.0 × 10 4 T 4 π × 10 7 T m/A = 25 A.


So a moderately large current produces a significant magnetic field at a distance of 5.0 cm from a long straight wire. Note that the answer is stated to only two digits, since the Earth’s field is specified to only two digits in this example.

Got questions? Get instant answers now!

Questions & Answers

explain how a light wave can be propagated in accordance with the principal of reversibility
Chibuzo Reply
what is the meaning of musical instruments
the definition of photon
Bright Reply
8kg of a hot liquid initial T is 90°© is missed with another liquid 3kg at 20° calculate e équilibrium T
Balki Reply
8kg of a hot liquid initial T is 90°© is missed with another liquid 3kg at 20° calculate e équilibrium T
answer plz
what are the products when acid and base mixed?
salt and water
What's this place about?
@Austin your answer should be SALT and WATER
salts and water
i guess salt and water
what work done
Dennis Reply
work done is the product of force and distance moved in the direction of force
Work done = force (F) * distance (D)
what is resounance
explain the three laws of isaac Newton with the reference
glory Reply
1st law ; a body will continue to stay at a state of rest or continue to move at a uniform motion on a straight line unless an external force is been acted upon
3rd law; in every action there is an equal or opposite reaction
2nd law: F=ma
why am i not having access to the Link in your exemples /figures ?
Augustine Reply
what is circut
hasiya Reply
newtons law of motion
First law:In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
a circuit is an electric part Wich is linked by a wire
is the ability to do work
Adjah Reply
u from
any body online hain
ability to do work is energy
what is energy
Mercy Reply
energy is ability of the capacity to doing work
what is vector
mosco Reply
A quantity that has both magnitude and direction
can a body with out mass float in space
Is the quantity that has both magnitude and direction
Yes it can float in space,e.g.polyethene has no mass that's why it can float in space
that's my suggestion,any other explanation can be given also,thanks
A charge of 1.6*10^-6C is placed in a uniform electric field in a density 2*5^10Nc^-1, what is the magnitude of the electric force exerted on the charge?
Omotosho Reply
what's phenomena
Enoch Reply
Phenomena is an observable fact or event.
Prove that 1/d+1/v=1/f
James Reply
What interference
Moyinoluwa Reply
What is a polarized light called?
what is a half life
Mama Reply
the time taken for a radioactive element to decay by half of its original mass
what is radioactive element
Half of the total time required by a radioactive nuclear atom to totally disintegrate
radioactive elements are those with unstable nuclei(ie have protons more than neutrons, or neutrons more than protons
in other words, the radioactive atom or elements have unequal number of protons to neutrons.
state the laws of refraction
state laws of reflection
Why does a bicycle rider bends towards the corner when is turning?
When do we say that the stone thrown vertically up wards accelerate negatively?
Give two importance of insulator placed between plates of a capacitor.
Macho had a shoe with a big sole moving in mudy Road, shanitah had a shoe with a small sole. Give reasons for those two cases.
Practice Key Terms 9

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?