<< Chapter < Page Chapter >> Page >
  • Calculate current that produces a magnetic field.
  • Use the right hand rule 2 to determine the direction of current or the direction of magnetic field loops.

How much current is needed to produce a significant magnetic field, perhaps as strong as the Earth’s field? Surveyors will tell you that overhead electric power lines create magnetic fields that interfere with their compass readings. Indeed, when Oersted discovered in 1820 that a current in a wire affected a compass needle, he was not dealing with extremely large currents. How does the shape of wires carrying current affect the shape of the magnetic field created? We noted earlier that a current loop created a magnetic field similar to that of a bar magnet, but what about a straight wire or a toroid (doughnut)? How is the direction of a current-created field related to the direction of the current? Answers to these questions are explored in this section, together with a brief discussion of the law governing the fields created by currents.

Magnetic field created by a long straight current-carrying wire: right hand rule 2

Magnetic fields have both direction and magnitude. As noted before, one way to explore the direction of a magnetic field is with compasses, as shown for a long straight current-carrying wire in [link] . Hall probes can determine the magnitude of the field. The field around a long straight wire is found to be in circular loops. The right hand rule 2 (RHR-2) emerges from this exploration and is valid for any current segment— point the thumb in the direction of the current, and the fingers curl in the direction of the magnetic field loops created by it.

Figure a shows a vertically oriented wire with current I running from bottom to top. Magnetic field lines circle the wire counter-clockwise as view from the top. Figure b illustrates the right hand rule 2. The thumb points up with current I. The fingers curl around counterclockwise as viewed from the top.
(a) Compasses placed near a long straight current-carrying wire indicate that field lines form circular loops centered on the wire. (b) Right hand rule 2 states that, if the right hand thumb points in the direction of the current, the fingers curl in the direction of the field. This rule is consistent with the field mapped for the long straight wire and is valid for any current segment.

The magnetic field strength (magnitude) produced by a long straight current-carrying wire    is found by experiment to be

B = μ 0 I 2 πr ( long straight wire ) , size 12{B= { {μ rSub { size 8{0} } I} over {2πr} } `` \( "long straight wire" \) ,} {}

where I size 12{I} {} is the current, r size 12{r} {} is the shortest distance to the wire, and the constant μ 0 = × 10 7 T m/A is the permeability of free space    . ( μ 0 size 12{ \( μ rSub { size 8{0} } } {} is one of the basic constants in nature. We will see later that μ 0 size 12{μ rSub { size 8{0} } } {} is related to the speed of light.) Since the wire is very long, the magnitude of the field depends only on distance from the wire r size 12{r} {} , not on position along the wire.

Calculating current that produces a magnetic field

Find the current in a long straight wire that would produce a magnetic field twice the strength of the Earth’s at a distance of 5.0 cm from the wire.

Strategy

The Earth’s field is about 5 . 0 × 10 5 T , and so here B size 12{B} {} due to the wire is taken to be 1 . 0 × 10 4 T . The equation B = μ 0 I 2 πr can be used to find I , since all other quantities are known.

Solution

Solving for I size 12{I} {} and entering known values gives

I = 2 π rB μ 0 = 2 π 5.0 × 10 2 m 1.0 × 10 4 T 4 π × 10 7 T m/A = 25 A.

Discussion

So a moderately large current produces a significant magnetic field at a distance of 5.0 cm from a long straight wire. Note that the answer is stated to only two digits, since the Earth’s field is specified to only two digits in this example.

Got questions? Get instant answers now!

Questions & Answers

what is physics
faith Reply
what are the basic of physics
faith
tree physical properties of heat
Bello Reply
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
what are the uses of dimensional analysis
Racheal Reply
Dimensional Analysis. The study of relationships between physical quantities with the help of their dimensions and units of measurements is called dimensional analysis. We use dimensional analysis in order to convert a unit from one form to another.
Emmanuel
meaning of OE and making of the subscript nc
ferunmi Reply
can I ask a question
Negash
kinetic functional force
Moyagabo Reply
what is a principal wave?
Haider Reply
A wave the movement of particles on rest position transferring energy from one place to another
Gabche
not wave. i need to know principal wave or waves.
Haider
principle wave is a superposition of wave when two or more waves meet at a point , whose amplitude is the algebraic sum of the amplitude of the waves
arshad
kindly define principal wave not principle wave (principle of super position) if u can understand my question
Haider
what is a model?
Ella Reply
hi
Muhanned
why are electros emitted only when the frequency of the incident radiation is greater than a certain value
ANSELEM Reply
b/c u have to know that for emission of electron need specific amount of energy which are gain by electron for emission . if incident rays have that amount of energy electron can be emitted, otherwise no way.
Nazir
search photoelectric effect on Google
Nazir
what is ohm's law
Pamilerin Reply
states that electric current in a given metallic conductor is directly proportional to the potential difference applied between its end, provided that the temperature of the conductor and other physical factors such as length and cross-sectional area remains constant. mathematically V=IR
ANIEFIOK
hi
Gundala
A body travelling at a velocity of 30ms^-1 in a straight line is brought to rest by application of brakes. if it covers a distance of 100m during this period, find the retardation.
Pamilerin Reply
just use v^2-u^2=2as
Gundala
how often does electrolyte emits?
alhassan
just use +€^3.7°√π%-4¢•∆¥%
v^2-u^2=2as v=0,u=30,s=100 -30^2=2a*100 -900=200a a=-900/200 a=-4.5m/s^2
akinyemi
what is distribution of trade
Grace Reply
what's acceleration
Joshua Reply
The change in position of an object with respect to time
Mfizi
Acceleration is velocity all over time
Pamilerin
hi
Stephen
It's not It's the change of velocity relative to time
Laura
Velocity is the change of position relative to time
Laura
acceleration it is the rate of change in velocity with time
Stephen
acceleration is change in velocity per rate of time
Noara
what is ohm's law
Stephen
Ohm's law is related to resistance by which volatge is the multiplication of current and resistance ( U=RI)
Laura
acceleration is the rate of change. of displacement with time.
Radical
the rate of change of velocity is called acceleration
Asma
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Seema
Practice Key Terms 9

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask