# 22.4 Magnetic field strength: force on a moving charge in a magnetic  (Page 2/7)

 Page 2 / 7

## Calculating magnetic force: earth’s magnetic field on a charged glass rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field. To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as shown in [link] .)

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation $F=\text{qvB}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta$ to find the force.

Solution

The magnetic force is

$F=\text{qvb}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta .$

We see that $\text{sin}\phantom{\rule{0.25em}{0ex}}\theta =1$ , since the angle between the velocity and the direction of the field is $\text{90º}$ . Entering the other given quantities yields

$\begin{array}{lll}F& =& \left(\text{20}×{\text{10}}^{–9}\phantom{\rule{0.25em}{0ex}}C\right)\left(\text{10 m/s}\right)\left(5×{\text{10}}^{–5}\phantom{\rule{0.25em}{0ex}}T\right)\\ & =& 1×{\text{10}}^{\text{–11}}\phantom{\rule{0.25em}{0ex}}\left(C\cdot \text{m/s}\right)\left(\frac{N}{C\cdot \text{m/s}}\right)=1×{\text{10}}^{\text{–11}}\phantom{\rule{0.25em}{0ex}}N.\end{array}$

Discussion

This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit, since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge in a Magnetic Field: Examples and Applications .

## Section summary

• Magnetic fields exert a force on a moving charge q , the magnitude of which is
$F=\text{qvB}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta ,$
where $\theta$ is the angle between the directions of $v$ and $B$ .
• The SI unit for magnetic field strength $B$ is the tesla (T), which is related to other units by
$1 T=\frac{\text{1 N}}{C\cdot \text{m/s}}=\frac{\text{1 N}}{A\cdot m}.$
• The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of $v$ , the fingers in the direction of $B$ , and a perpendicular to the palm points in the direction of $F$ .
• The force is perpendicular to the plane formed by $\mathbf{\text{v}}$ and $\mathbf{\text{B}}$ . Since the force is zero if $\mathbf{\text{v}}$ is parallel to $\mathbf{\text{B}}$ , charged particles often follow magnetic field lines rather than cross them.

## Conceptual questions

If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is necessarily zero?

## Problems&Exercises

What is the direction of the magnetic force on a positive charge that moves as shown in each of the six cases shown in [link] ?

(a) Left (West)

(b) Into the page

(c) Up (North)

(d) No force

(e) Right (East)

(f) Down (South)

Repeat [link] for a negative charge.

What is the direction of the velocity of a negative charge that experiences the magnetic force shown in each of the three cases in [link] , assuming it moves perpendicular to $\mathbf{\text{B}}?$

(a) East (right)

(b) Into page

(c) South (down)

Repeat [link] for a positive charge.

What is the direction of the magnetic field that produces the magnetic force on a positive charge as shown in each of the three cases in the figure below, assuming $\mathbf{\text{B}}$ is perpendicular to $\mathbf{\text{v}}$ ?

(a) Into page

(b) West (left)

(c) Out of page

Repeat [link] for a negative charge.

What is the maximum force on an aluminum rod with a $0\text{.}\text{100}\text{-μC}$ charge that you pass between the poles of a 1.50-T permanent magnet at a speed of 5.00 m/s? In what direction is the force?

$7\text{.}\text{50}×{\text{10}}^{-7}\phantom{\rule{0.25em}{0ex}}\text{N}$ perpendicular to both the magnetic field lines and the velocity

(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a $0\text{.}\text{500}\text{-μC}$ charge and flies due west at a speed of 660 m/s over the Earth’s south magnetic pole, where the $8\text{.}\text{00}×{\text{10}}^{-5}\text{-T}$ magnetic field points straight up. What are the direction and the magnitude of the magnetic force on the plane? (b) Discuss whether the value obtained in part (a) implies this is a significant or negligible effect.

(a) A cosmic ray proton moving toward the Earth at $\text{5.00}×{\text{10}}^{7}\phantom{\rule{0.25em}{0ex}}\text{m/s}$ experiences a magnetic force of $1\text{.}\text{70}×{\text{10}}^{-\text{16}}\phantom{\rule{0.25em}{0ex}}\text{N}$ . What is the strength of the magnetic field if there is a $\text{45º}$ angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.

(a) $3\text{.}\text{01}×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{T}$

(b) This is slightly less then the magnetic field strength of $5×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{T}$ at the surface of the Earth, so it is consistent.

An electron moving at $4\text{.}\text{00}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{m/s}$ in a 1.25-T magnetic field experiences a magnetic force of $1\text{.}\text{40}×{\text{10}}^{-\text{16}}\phantom{\rule{0.25em}{0ex}}\text{N}$ . What angle does the velocity of the electron make with the magnetic field? There are two answers.

(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than $1\text{.}\text{00}×{\text{10}}^{-\text{12}}\phantom{\rule{0.25em}{0ex}}N$ . What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity and noting that static is often absent.

(a) $6\text{.}\text{67}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{C}$ (taking the Earth’s field to be $5\text{.}\text{00}×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{T}$ )

(b) Less than typical static, therefore difficult

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
What is thermal heat all about
why uniform circular motion is called a periodic motion?.
when a train start from A & it returns at same station A . what is its acceleration?
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
what are the types of radioactivity
Worku
what is static friction
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
definition of mass of conversion
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
Boniface
the range of objects and phenomena studied in physics is
Boniface