<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Analyze a complex circuit using Kirchhoff’s rules, applying the conventions for determining the correct signs of various terms.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 5.B.9.1 The student is able to construct or interpret a graph of the energy changes within an electrical circuit with only a single battery and resistors in series and/or in, at most, one parallel branch as an application of the conservation of energy (Kirchhoff’s loop rule). (S.P. 1.1, 1.4)
  • 5.B.9.2 The student is able to apply conservation of energy concepts to the design of an experiment that will demonstrate the validity of Kirchhoff’s loop rule in a circuit with only a battery and resistors either in series or in, at most, one pair of parallel branches. (S.P. 4.2, 6.4, 7.2)
  • 5.B.9.3 The student is able to apply conservation of energy (Kirchhoff’s loop rule) in calculations involving the total electric potential difference for complete circuit loops with only a single battery and resistors in series and/or in, at most, one parallel branch. (S.P. 2.2, 6.4, 7.2)
  • 5.B.9.4 The student is able to analyze experimental data including an analysis of experimental uncertainty that will demonstrate the validity of Kirchhoff’s loop rule. (S.P. 5.1)
  • 5.B.9.5 The student is able to use conservation of energy principles (Kirchhoff’s loop rule) to describe and make predictions regarding electrical potential difference, charge, and current in steady-state circuits composed of various combinations of resistors and capacitors. (S.P. 6.4)
  • 5.C.3.1 The student is able to apply conservation of electric charge (Kirchhoff’s junction rule) to the comparison of electric current in various segments of an electrical circuit with a single battery and resistors in series and in, at most, one parallel branch and predict how those values would change if configurations of the circuit are changed. (S.P. 6.4, 7.2)
  • 5.C.3.2 The student is able to design an investigation of an electrical circuit with one or more resistors in which evidence of conservation of electric charge can be collected and analyzed. (S.P. 4.1, 4.2, 5.1)
  • 5.C.3.3 The student is able to use a description or schematic diagram of an electrical circuit to calculate unknown values of current in various segments or branches of the circuit. (S.P. 1.4, 2.2)
  • 5.C.3.4 The student is able to predict or explain current values in series and parallel arrangements of resistors and other branching circuits using Kirchhoff’s junction rule and relate the rule to the law of charge conservation. (S.P. 6.4, 7.2)
  • 5.C.3.5 The student is able to determine missing values and direction of electric current in branches of a circuit with resistors and NO capacitors from values and directions of current in other branches of the circuit through appropriate selection of nodes and application of the junction rule. (S.P. 1.4, 2.2)

Many complex circuits, such as the one in [link] , cannot be analyzed with the series-parallel techniques developed in Resistors in Series and Parallel and Electromotive Force: Terminal Voltage . There are, however, two circuit analysis rules that can be used to analyze any circuit, simple or complex. These rules are special cases of the laws of conservation of charge and conservation of energy. The rules are known as Kirchhoff’s rules    , after their inventor Gustav Kirchhoff (1824–1887).

Questions & Answers

how can I read physics...am finding it difficult to understand...pls help
rerry Reply
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
I have a exam on 12 february
David Reply
what is velocity
Jiti
the speed of something in a given direction.
Ju
what is a magnitude in physics
Jiti Reply
Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.
Giovani Reply
What is meant by dielectric charge?
It's Reply
what happens to the size of charge if the dielectric is changed?
Brhanu Reply
omega= omega not +alpha t derivation
Provakar Reply
u have to derivate it respected to time ...and as w is the angular velocity uu will relace it with "thita × time""
Abrar
do to be peaceful with any body
Brhanu Reply
the angle subtended at the center of sphere of radius r in steradian is equal to 4 pi how?
Saeed Reply
if for diatonic gas Cv =5R/2 then gamma is equal to 7/5 how?
Saeed
define variable velocity
Ali Reply
displacement in easy way.
Mubashir Reply
binding energy per nucleon
Poonam Reply
why God created humanity
Manuel Reply
Because HE needs someone to dominate the earth (Gen. 1:26)
Olorunfemi
why god made humenity
Ali
and he to multiply
Owofemi
stuff happens
Ju
God plays dice
Ju
Is the object in a conductor or an insulator? Justify your answer. whats the answer to this question? pls need help figure is given above
Jun Reply
ok we can say body is electrically neutral ...conductor this quality is given to most metalls who have free electron in orbital d ...but human doesn't have ...so we re made from insulator or dielectric material ... furthermore, the menirals in our body like k, Fe , cu , zn
Abrar
when we face electric shock these elements work as a conductor that's why we got this shock
Abrar
how do i calculate the pressure on the base of a deposit if the deposit is moving with a linear aceleration
ximena Reply
Practice Key Terms 4

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask