# 21.2 Electromotive force: terminal voltage  (Page 3/12)

 Page 3 / 12

Why are the chemicals able to produce a unique potential difference? Quantum mechanical descriptions of molecules, which take into account the types of atoms and numbers of electrons in them, are able to predict the energy states they can have and the energies of reactions between them.

In the case of a lead-acid battery, an energy of 2 eV is given to each electron sent to the anode. Voltage is defined as the electrical potential energy divided by charge: $V=\frac{{P}_{\text{E}}}{q}$ . An electron volt is the energy given to a single electron by a voltage of 1 V. So the voltage here is 2 V, since 2 eV is given to each electron. It is the energy produced in each molecular reaction that produces the voltage. A different reaction produces a different energy and, hence, a different voltage.

## Terminal voltage

The voltage output of a device is measured across its terminals and, thus, is called its terminal voltage     $\phantom{\rule{0.25em}{0ex}}V$ . Terminal voltage is given by

$V=\text{emf}-\text{Ir},$

where $r$ is the internal resistance and $I$ is the current flowing at the time of the measurement.

$I$ is positive if current flows away from the positive terminal, as shown in [link] . You can see that the larger the current, the smaller the terminal voltage. And it is likewise true that the larger the internal resistance, the smaller the terminal voltage.

Suppose a load resistance ${R}_{\text{load}}$ is connected to a voltage source, as in [link] . Since the resistances are in series, the total resistance in the circuit is ${R}_{\text{load}}+r$ . Thus the current is given by Ohm’s law to be

$I=\frac{\text{emf}}{{R}_{\text{load}}+r}.$

We see from this expression that the smaller the internal resistance $r$ , the greater the current the voltage source supplies to its load ${R}_{\text{load}}$ . As batteries are depleted, $r$ increases. If $r$ becomes a significant fraction of the load resistance, then the current is significantly reduced, as the following example illustrates.

## Calculating terminal voltage, power dissipation, current, and resistance: terminal voltage and load

A certain battery has a 12.0-V emf and an internal resistance of $0\text{.}\text{100}\phantom{\rule{0.25em}{0ex}}\Omega$ . (a) Calculate its terminal voltage when connected to a $\text{10.0-}\Omega$ load. (b) What is the terminal voltage when connected to a $0\text{.}\text{500-}\Omega$ load? (c) What power does the $0\text{.}\text{500-}\Omega$ load dissipate? (d) If the internal resistance grows to $0\text{.}\text{500}\phantom{\rule{0.25em}{0ex}}\Omega$ , find the current, terminal voltage, and power dissipated by a $0\text{.}\text{500-}\Omega$ load.

Strategy

The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found, the terminal voltage can be calculated using the equation $V=\text{emf}-\text{Ir}$ . Once current is found, the power dissipated by a resistor can also be found.

Solution for (a)

Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

$I=\frac{\text{emf}}{{R}_{\text{load}}+r}=\frac{\text{12}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{V}}{\text{10}\text{.}\text{1}\phantom{\rule{0.15em}{0ex}}\Omega }=1\text{.}\text{188}\phantom{\rule{0.25em}{0ex}}\text{A}.$

Enter the known values into the equation $V=\text{emf}-\text{Ir}$ to get the terminal voltage:

Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.077 m2, and the magnitude of the fluid velocity is 3.50 m/s. (a) What is the fluid speed at points in the pipe where the cross
A particle behave like a wave and we do not why?
WAQAR
what's the period of velocity 4cm/s at displacement 10cm
What is physics
the branch of science concerned with the nature and properties of matter and energy. The subject matter of physics includes mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms.
Aluko
and the word of matter is anything that have mass and occupied space
Aluko
what is phyices
Whats the formula
1/v+1/u=1/f
Aluko
what aspect of black body spectrum forced plank to purpose quantization of energy level in its atoms and molicules
a man has created by who?
What type of experimental evidence indicates that light is a wave
double slit experiment
Eric
The S. L. Unit of sound energy is
what's the conversation like?
some sort of blatherring or mambo jambo you may say
I still don't understand what this group is all about oo
ENOBONG
no
uchenna
ufff....this associated with physics ..so u can ask questions related to all topics of physics..
what is sound?
Bella
what is upthrust
what is upthrust
Olisa
Up thrust is a force
Samuel
upthrust is a upward force that acts vertical in the ground surface.
Rodney
Paul
what is centre of gravity?
Paul
you think the human body could produce such Force
Anthony
what is wave
mirobiology
Angel
what is specific latent heat
the total amount of heat energy required to change the physical state of a unit mass of matter without a corresponding change in temperature.
fitzgerald
is there any difference between specific heat and heat capacity.....
what wave
Bryan
why medical physics even.we have a specoal branch of science biology for this.
what is physics