<< Chapter < Page Chapter >> Page >
  • Explain the differences and similarities between AC and DC current.
  • Calculate rms voltage, current, and average power.
  • Explain why AC current is used for power transmission.

Alternating current

Most of the examples dealt with so far, and particularly those utilizing batteries, have constant voltage sources. Once the current is established, it is thus also a constant. Direct current (DC) is the flow of electric charge in only one direction. It is the steady state of a constant-voltage circuit. Most well-known applications, however, use a time-varying voltage source. Alternating current (AC) is the flow of electric charge that periodically reverses direction. If the source varies periodically, particularly sinusoidally, the circuit is known as an alternating current circuit. Examples include the commercial and residential power that serves so many of our needs. [link] shows graphs of voltage and current versus time for typical DC and AC power. The AC voltages and frequencies commonly used in homes and businesses vary around the world.

Part a shows a graph of voltage V and current I versus time for a D C source. The time is along the x axis and V and I are along the y axis. The graph shows that the voltage V sub D C and the current I sub D C do not vary with time. Part b shows the variation of voltage V and current I with time for an A C source. The time is along the horizontal axis and V and I are along the vertical axis. The graph for I is a progressing sine wave with a peak value I sub zero on the positive y axis and negative I sub zero on the negative y axis. The graph for V is a progressing sine wave with a higher amplitude than the current curve with a peak value V sub zero on the positive y axis and negative V sub zero on the negative y axis. The peak values of the voltage and current sine waves occur at the same time because they are in phase.
(a) DC voltage and current are constant in time, once the current is established. (b) A graph of voltage and current versus time for 60-Hz AC power. The voltage and current are sinusoidal and are in phase for a simple resistance circuit. The frequencies and peak voltages of AC sources differ greatly.
The potential difference variation of an alternating current voltage source with time is shown as a progressing sine wave. The voltage is shown along the vertical axis and the time is along the horizontal axis. Circuit diagrams show that current flowing in one direction corresponds to positive values of the voltage sine wave. Current flowing in the opposite direction in the circuit corresponds to negative values of the voltage sine wave. The maximum value of the voltage sine wave is plus V sub zero. The minimum value of the voltage sine wave is minus V sub zero.
The potential difference V between the terminals of an AC voltage source fluctuates as shown. The mathematical expression for V is given by V = V 0 sin 2 π ft size 12{V = V rSub { size 8{0} } "sin"" 2"π ital "ft"} {} .

[link] shows a schematic of a simple circuit with an AC voltage source. The voltage between the terminals fluctuates as shown, with the AC voltage    given by

V = V 0 sin 2 π ft, size 12{V = V rSub { size 8{0} } "sin"" 2"π ital "ft"} {}

where V size 12{V} {} is the voltage at time t size 12{t} {} , V 0 size 12{V rSub { size 8{0} } } {} is the peak voltage, and f size 12{f} {} is the frequency in hertz. For this simple resistance circuit, I = V/R size 12{I = ital "V/R"} {} , and so the AC current    is

I = I 0 sin 2 π ft, size 12{I = I rSub { size 8{0} } " sin 2"π ital "ft"} {}

where I size 12{I} {} is the current at time t size 12{t} {} , and I 0 = V 0 /R size 12{I rSub { size 8{0} } = V rSub { size 8{0} } ital "/R"} {} is the peak current. For this example, the voltage and current are said to be in phase, as seen in [link] (b).

Current in the resistor alternates back and forth just like the driving voltage, since I = V/R size 12{I = ital "V/R"} {} . If the resistor is a fluorescent light bulb, for example, it brightens and dims 120 times per second as the current repeatedly goes through zero. A 120-Hz flicker is too rapid for your eyes to detect, but if you wave your hand back and forth between your face and a fluorescent light, you will see a stroboscopic effect evidencing AC. The fact that the light output fluctuates means that the power is fluctuating. The power supplied is P = IV size 12{P = ital "IV"} {} . Using the expressions for I size 12{I} {} and V size 12{V} {} above, we see that the time dependence of power is P = I 0 V 0 sin 2 2 π ft size 12{P= I rSub { size 8{0} } V rSub { size 8{0} } "sin" rSup { size 8{2} } " 2"π ital "ft"} {} , as shown in [link] .

Making connections: take-home experiment—ac/dc lights

Wave your hand back and forth between your face and a fluorescent light bulb. Do you observe the same thing with the headlights on your car? Explain what you observe. Warning: Do not look directly at very bright light .

A graph showing the variation of power P with time t. The power is along the vertical axis and time is along the horizontal axis. The curve is a sine wave starting at the origin on the horizontal axis and having the crests and troughs both above the positive horizontal axis. The maximum value of power is given by the peak value, which is the product of I sub zero and V sub zero. The average power is indicated by a dotted line through the center of the wave parallel to the horizontal axis with a value half of the product of I sub zero and V sub zero.
AC power as a function of time. Since the voltage and current are in phase here, their product is non-negative and fluctuates between zero and I 0 V 0 size 12{I rSub { size 8{0} } V rSub { size 8{0} } } {} . Average power is ( 1 / 2 ) I 0 V 0 size 12{ \( 1/2 \) I rSub { size 8{0} } V rSub { size 8{0} } } {} .

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask