<< Chapter < Page Chapter >> Page >

Additional general information can be obtained from [link] and the expression for a straight line, y = mx + b size 12{y= ital "mx"+b} {} .

In this case, the vertical axis y size 12{y} {} is V size 12{V} {} , the intercept b size 12{b} {} is v 0 size 12{v rSub { size 8{0} } } {} , the slope m size 12{m} {} is a size 12{a} {} , and the horizontal axis x size 12{x} {} is t size 12{t} {} . Substituting these symbols yields

v = v 0 + at . size 12{v=v rSub { size 8{0} } + ital "at"} {}

A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension .

It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important way to discover physical relationships is to measure various physical quantities and then make graphs of one quantity against another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then performed to determine the validity of the hypothesized relationships.

Graphs of motion where acceleration is not constant

Now consider the motion of the jet car as it goes from 165 m/s to its top velocity of 250 m/s, graphed in [link] . Time again starts at zero, and the initial displacement and velocity are 2900 m and 165 m/s, respectively. (These were the final displacement and velocity of the car in the motion graphed in [link] .) Acceleration gradually decreases from 5 . 0 m/s 2 to zero when the car hits 250 m/s. The slope of the x vs. t graph increases until t = 55 s size 12{t="55"`s} {} , after which time the slope is constant. Similarly, velocity increases until 55 s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero afterward.

Three line graphs of jet car displacement, velocity, and acceleration, respectively. First line graph is of position over time. Line is straight with a positive slope. Second line graph is of velocity over time. Line graph has a positive slope that decreases over time and flattens out at the end. Third line graph is of acceleration over time. Line has a negative slope that increases over time until it flattens out at the end. The line is not smooth, but has several kinks.
Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in [link] ends. (a) The slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this graph is acceleration; it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

Calculating acceleration from a graph of velocity versus time

Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the v size 12{v} {} vs. t size 12{t} {} graph in [link] (b).

Strategy

The slope of the curve at t = 25 s size 12{t="25"`s} {} is equal to the slope of the line tangent at that point, as illustrated in [link] (b).

Solution

Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, a size 12{a} {} .

slope = Δ v Δ t = 260 m/s 210 m/s 51 s 1.0 s
a = 50 m/s 50 s = 1 . 0 m /s 2 .

Discussion

Note that this value for a is consistent with the value plotted in [link] (c) at t = 25 s size 12{t="25"`s} {} .

Got questions? Get instant answers now!

A graph of displacement versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time can be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the graph is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point. Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for underlying relationships.

Questions & Answers

What is the frictional forc e between two bodies
Kennedy Reply
it is the force which always opposes the motion of the body
ZAMAN
what is a wave
Williams Reply
wave means. A field of study
aondohemba
what are Atoms
aondohemba
is the movement back and front or up and down
sani
how ?
aondohemba
wave is a disturbance that transfers energy through matter or space with little or no associated mass.
lots
A wave is a motion of particles in disturbed medium that carry energy from one midium to another
conist
an atom is the smallest unit( particle) of an element that bares it's chemical properties
conist
what is electromagnetic induction?
conist
what's boy's law
mahmud
How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?
Larissa Reply
How do you convert 0.0045kgcm³ to the si unit?
EDYKING Reply
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
Falana Reply
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Thapelo
Alright Thank you
Falana
Which one is the Bose-Einstein
James
can you explain what plasma and the I her one you mentioned
Olatunde
u can say sun or stars are just the state of plasma
Mohit
but the are more than seven
Issa
list it out I wanna know
Cristal
what the meaning of continuum
Akhigbe Reply
What state of matter is fire
Thapelo Reply
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Xenda
Isn`t fire the plasma state of matter?
Walter
all this while I taught it was plasma
Victor
How can you define time?
Thapelo Reply
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
Tanaya
unpredictable? but I can say after one o'clock its going to be two o'clock predictably!
Victor
how can we define vector
mahmud
I would define it as having a magnitude (size)with a direction. An example I can think of is a car traveling at 50m/s (magnitude) going North (direction)
Hanzo
as for me guys u would say time is quantity that measures how long it takes for a specific condition to happen e.g how long it takes for the day to end or how it takes for the travelling car to cover a km.
conist
what is the relativity of physics
Paul Reply
How do you convert 0.0045kgcm³ to the si unit?
flint
What is the formula for motion
Anthony Reply
V=u+at V²=u²-2as
flint
S=ut+½at
flint
they are eqns of linear motion
King
S=Vt
Thapelo
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
King
hi
Mehadi
hello
King
Explain dopplers effect
Jennifer Reply
Not yet learnt
Bob
Explain motion with types
Bob
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Alabi Reply
Scalar quantity Because acceleration has only magnitude
Bob
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
bhat
its a scalar quantity
Paul
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
Josh
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
fitzgerald
respect to prevailing force
fitzgerald
What is the difference between impulse and momentum?
Manyo
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
fitzgerald
Or I = m(v-u)
fitzgerald
the tendency of a body to maintain it's inertia motion is called momentum( I believe you know what inertia means) so for a body to be in momentum it will be really hard to stop such body or object..... this is where impulse comes in.. the force applied to stop the momentum of such body is impulse..
Pelumi
Calculation of kinetic and potential energy
dion Reply
K.e=mv² P.e=mgh
Malia
K is actually 1/2 mv^2
Josh
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
John
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
Melody
what is sound wave
Nworu Reply
sound wave is a mechanical longitudinal wave that transfers energy from one point to another
Ogor
its a longitudnal wave which is associted wth compresion nad rearfractions
bhat
what is power
PROMISE Reply
it's also a capability to do something or act in a particular way.
Kayode
Newton laws of motion
Mike
power also known as the rate of ability to do work
Slim
power means capabilty to do work p=w/t its unit is watt or j/s it also represents how much work is done fr evry second
bhat
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask