# 16.3 Simple harmonic motion: a special periodic motion  (Page 2/7)

 Page 2 / 7

In fact, the mass $m$ and the force constant $k$ are the only factors that affect the period and frequency of simple harmonic motion.

## Period of simple harmonic oscillator

The period of a simple harmonic oscillator is given by

$T=2\pi \sqrt{\frac{m}{k}}$

and, because $f=1/T$ , the frequency of a simple harmonic oscillator is

$f=\frac{1}{2\pi }\sqrt{\frac{k}{m}}.$

Note that neither $T$ nor $f$ has any dependence on amplitude.

## Take-home experiment: mass and ruler oscillations

Find two identical wooden or plastic rulers. Tape one end of each ruler firmly to the edge of a table so that the length of each ruler that protrudes from the table is the same. On the free end of one ruler tape a heavy object such as a few large coins. Pluck the ends of the rulers at the same time and observe which one undergoes more cycles in a time period, and measure the period of oscillation of each of the rulers.

## Calculate the frequency and period of oscillations: bad shock absorbers in a car

If the shock absorbers in a car go bad, then the car will oscillate at the least provocation, such as when going over bumps in the road and after stopping (See [link] ). Calculate the frequency and period of these oscillations for such a car if the car’s mass (including its load) is 900 kg and the force constant ( $k$ ) of the suspension system is $6\text{.}\text{53}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N/m}$ .

Strategy

The frequency of the car’s oscillations will be that of a simple harmonic oscillator as given in the equation $f=\frac{1}{2\pi }\sqrt{\frac{k}{m}}$ . The mass and the force constant are both given.

Solution

1. Enter the known values of k and m :
$f=\frac{1}{2\pi }\sqrt{\frac{k}{m}}=\frac{1}{2\pi }\sqrt{\frac{6\text{.}\text{53}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N/m}}{\text{900}\phantom{\rule{0.25em}{0ex}}\text{kg}}}.$
2. Calculate the frequency:
$\frac{1}{2\pi }\sqrt{\text{72.}6/{\text{s}}^{–2}}=1\text{.}{\text{3656}/\text{s}}^{\text{–1}}\approx 1\text{.}{\text{36}/\text{s}}^{\text{–1}}=\text{1.36 Hz}.$
3. You could use $T=2\pi \sqrt{\frac{m}{k}}$ to calculate the period, but it is simpler to use the relationship $T=1/f$ and substitute the value just found for $f$ :
$T=\frac{1}{f}=\frac{1}{1\text{.}\text{356}\phantom{\rule{0.25em}{0ex}}\text{Hz}}=0\text{.}\text{738}\phantom{\rule{0.25em}{0ex}}\text{s}.$

Discussion

The values of $T$ and $f$ both seem about right for a bouncing car. You can observe these oscillations if you push down hard on the end of a car and let go.

If a time-exposure photograph of the bouncing car were taken as it drove by, the headlight would make a wavelike streak, as shown in [link] . Similarly, [link] shows an object bouncing on a spring as it leaves a wavelike "trace of its position on a moving strip of paper. Both waves are sine functions. All simple harmonic motion is intimately related to sine and cosine waves.

The displacement as a function of time t in any simple harmonic motion—that is, one in which the net restoring force can be described by Hooke’s law, is given by

$x\left(t\right)=X\phantom{\rule{0.25em}{0ex}}\text{cos}\frac{2\mathrm{\pi t}}{T},$

where $X$ is amplitude. At $t=0$ , the initial position is ${x}_{0}=X$ , and the displacement oscillates back and forth with a period $T$ . (When $t=T$ , we get $x=X$ again because $\text{cos}\phantom{\rule{0.25em}{0ex}}2\pi =1$ .). Furthermore, from this expression for $x$ , the velocity $v$ as a function of time is given by:

A stone is dropped down a well, if it take 5 seconds to reach the water, how dip is the well
an aircraft at as steady velocity of 70m/so eastwards at a height of 800me drops a package of supplies .a, how long will it take for the package to rich the ground? b, how fast will it be going as it lands?
what is hypothesis theory law
Tamba
physics is the science of measurement
What is physics
what is physics
Obaro
Good question! Physics is the study of the nature world . Does this help?
Yonn
physics is the study of matter in relations to energy.
Enoch
physics is the science of measurements
Jide
physics is a science concern with nature and properties of matter and energy
Ugomma
what is a parallelogram law of motion?
Nancy
Definition for physics
It deal with matter and relation to energy
Soughie
physics is the Study of matter in relation to energy.
albert
physics is a natural science that study matter its behaviour and relation to energy.
mohammed
physic tells us more about quantities and measurement also
Kelly
life as we know it that can be measured and calculated
Jesus
what is a reference frame
what is anatomy in relation to physics
how does half life exist
The amount of time it takes a radioactive isotope to decay into a stable isotope is different for each radioactive isotope, and is characterized by its “half-life”. An isotope's half-life is the amount of time it takes for half the number of atoms of that isotope to decay to another isotope.
Nardine
what is the difference between Mass and weight
Pjustin
mass is constant while weight varies. unit of mass is kg, unit of weight is newton
Faith
how can a coin float in water and what principle governs it
in my opinion that work of surface tension but restrictions on coin is that coin do not break surface energy of molecules but some days before scientists prove that's another types of force
Aman
which force hold floating coins together thats my confusion
Aman
how can a coin float in water and what principle governs it
why many of the coin floating in water
what is hook's law
provided the elastic limit is not exceeded,the extension produce in an elastic material is equal to the applied force
Mahmud
What is Andromeda
👡
Mahmud
What are the international agreed system of unit for physical measurements
m, kg, s
Faith
kg , m, s
Faith
si
Aman
meter , kilogram , second
Kelly
international system of units is agreed system because more units are not in mks system so si exist with ampere unit
Aman
what is thermodynasmics
what is electromagnetic force
Femkid
Electromagnetic force means a force that deals with electric and magnetic
Nebil