# 16.2 Period and frequency in oscillations

 Page 1 / 4
• Observe the vibrations of a guitar string.
• Determine the frequency of oscillations. The strings on this guitar vibrate at regular time intervals. (credit: JAR)

When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each successive vibration of the string takes the same time as the previous one. We define periodic motion    to be a motion that repeats itself at regular time intervals, such as exhibited by the guitar string or by an object on a spring moving up and down. The time to complete one oscillation remains constant and is called the period     $T$ . Its units are usually seconds, but may be any convenient unit of time. The word period refers to the time for some event whether repetitive or not; but we shall be primarily interested in periodic motion, which is by definition repetitive. A concept closely related to period is the frequency of an event. For example, if you get a paycheck twice a month, the frequency of payment is two per month and the period between checks is half a month. Frequency $f$ is defined to be the number of events per unit time. For periodic motion, frequency is the number of oscillations per unit time. The relationship between frequency and period is

$f=\frac{1}{T}.$

The SI unit for frequency is the cycle per second , which is defined to be a hertz (Hz):

$\text{1 Hz}=1\frac{\text{cycle}}{\text{sec}}\text{or 1 Hz}=\frac{1}{\text{s}}$

A cycle is one complete oscillation. Note that a vibration can be a single or multiple event, whereas oscillations are usually repetitive for a significant number of cycles.

## Determine the frequency of two oscillations: medical ultrasound and the period of middle c

We can use the formulas presented in this module to determine both the frequency based on known oscillations and the oscillation based on a known frequency. Let’s try one example of each. (a) A medical imaging device produces ultrasound by oscillating with a period of 0.400 µs. What is the frequency of this oscillation? (b) The frequency of middle C on a typical musical instrument is 264 Hz. What is the time for one complete oscillation?

Strategy

Both questions (a) and (b) can be answered using the relationship between period and frequency. In question (a), the period $T$ is given and we are asked to find frequency $f$ . In question (b), the frequency $f$ is given and we are asked to find the period $T$ .

Solution a

1. Substitute $0\text{.}\text{400}\phantom{\rule{0.25em}{0ex}}\mathrm{\text{μ}}\text{s}$ for $T$ in $f=\frac{1}{T}$ :
$f=\frac{1}{T}=\frac{1}{0\text{.}\text{400}×{\text{10}}^{-6}\phantom{\rule{0.25em}{0ex}}s}.$

Solve to find

$f=2\text{.}\text{50}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{Hz}.$

Discussion a

The frequency of sound found in (a) is much higher than the highest frequency that humans can hear and, therefore, is called ultrasound. Appropriate oscillations at this frequency generate ultrasound used for noninvasive medical diagnoses, such as observations of a fetus in the womb.

Solution b

1. Identify the known values:

The time for one complete oscillation is the period $T$ :

$f=\frac{1}{T}.$
2. Solve for $T$ :
$T=\frac{1}{f}.$
3. Substitute the given value for the frequency into the resulting expression:
$T=\frac{1}{f}=\frac{1}{\text{264}\phantom{\rule{0.25em}{0ex}}\text{Hz}}=\frac{1}{\text{264}\phantom{\rule{0.25em}{0ex}}\text{cycles/s}}=3\text{.}\text{79}×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}\text{s}=3\text{.}\text{79}\phantom{\rule{0.25em}{0ex}}\text{ms}.$

Discussion

The period found in (b) is the time per cycle, but this value is often quoted as simply the time in convenient units (ms or milliseconds in this case).

Identify an event in your life (such as receiving a paycheck) that occurs regularly. Identify both the period and frequency of this event.

I visit my parents for dinner every other Sunday. The frequency of my visits is 26 per calendar year. The period is two weeks.

## Section summary

• Periodic motion is a repetitious oscillation.
• The time for one oscillation is the period $T$ .
• The number of oscillations per unit time is the frequency $f$ .
• These quantities are related by
$f=\frac{1}{T}.$

## Problems&Exercises

What is the period of $\text{60}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{Hz}$ electrical power?

16.7 ms

If your heart rate is 150 beats per minute during strenuous exercise, what is the time per beat in units of seconds?

$0.400 s/\text{beats}$

Find the frequency of a tuning fork that takes $2\text{.}\text{50}×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}\text{s}$ to complete one oscillation.

400 Hz

A stroboscope is set to flash every $8\text{.}\text{00}×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{s}$ . What is the frequency of the flashes?

12,500 Hz

A tire has a tread pattern with a crevice every 2.00 cm. Each crevice makes a single vibration as the tire moves. What is the frequency of these vibrations if the car moves at 30.0 m/s?

1.50 kHz

Engineering Application

Each piston of an engine makes a sharp sound every other revolution of the engine. (a) How fast is a race car going if its eight-cylinder engine emits a sound of frequency 750 Hz, given that the engine makes 2000 revolutions per kilometer? (b) At how many revolutions per minute is the engine rotating?

(a) 93.8 m/s

(b) $\text{11}\text{.}3×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{rev/min}$

Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
what's electromagnetic induction
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
yes it was an assignment question "^"represent raise to power pls
Gabriel
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
method of polarization
Ajayi
What is atomic number?
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
why the satellite does not drop to the earth explain
what is a matter
Yinka
what is matter
Yinka
what is matter
Yinka
what is a matter
Yinka
I want the nuclear physics conversation
Mohamed
because space is a vacuum and anything outside the earth 🌎 can not come back without an act of force applied to it to leave the vacuum and fall down to the earth with a maximum force length of 30kcm per second
Clara
at t=0second,aparticles moving in x-y plain with aconstant acceleration has avelocity of initial velocity =(3i-2j)m/s and is at the origion.at t=3second the particle's velocity is final velocity=(9i+7j)then how to find the acceleration?
how about the formula like v^2=u^2+2as
Bayuo
a=v-u/t
Doreen
what is physics
Yinka
why is there a maximum distance at which the image can exist behind a convex mirror
The ball of a simple pendulum take 0.255 to swing from its equilibrium position to one extreme. Calculate it period.
The Ball of a simple pendulum take 0.255 to swing from its equilibrium position to one extreme. calculate its period
Abubakr
why is there a maximum distance at which the image can exist behind a convex mirror
Alfred
amplitude=0 .255s period=4×.255=1.02 sec period is one complete cycle
MUKHTAR

#### Get Jobilize Job Search Mobile App in your pocket Now! By By John Gabrieli By Marion Cabalfin By Madison Christian By Madison Christian By Robert Murphy By Laurence Bailen By OpenStax By OpenStax By Angelica Lito By OpenStax