<< Chapter < Page Chapter >> Page >

Percent relative humidity

We define percent relative humidity    as the ratio of vapor density to saturation vapor density, or

percent relative humidity = vapor density saturation vapor density × 100 size 12{ size 11{"percent relative humidity"= { { size 11{"vapor density"}} over { size 11{"saturation vapor density"}} } times "100"}} {}

We can use this and the data in [link] to do a variety of interesting calculations, keeping in mind that relative humidity is based on the comparison of the partial pressure of water vapor in air and ice.

Calculating humidity and dew point

(a) Calculate the percent relative humidity on a day when the temperature is 25 . 0 º C size 12{"25" "." 0°C} {} and the air contains 9.40 g of water vapor per m 3 size 12{m rSup { size 8{3} } } {} . (b) At what temperature will this air reach 100% relative humidity (the saturation density)? This temperature is the dew point. (c) What is the humidity when the air temperature is 25 . 0 º C size 12{"25" "." 0°C} {} and the dew point is 10 . 0 º C size 12{ +- "10" "." 0°C} {} ?

Strategy and Solution

(a) Percent relative humidity is defined as the ratio of vapor density to saturation vapor density.

percent relative humidity = vapor density saturation vapor density × 100 size 12{ size 11{"percent relative humidity"= { { size 11{"vapor density"}} over { size 11{"saturation vapor density"}} } times "100"}} {}

The first is given to be 9 . 40 g/m 3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} , and the second is found in [link] to be 23 . 0 g/m 3 size 12{"23" "." "0 g/m" rSup { size 8{3} } } {} . Thus,

percent relative humidity = 9 . 40 g/m 3 23 . 0 g/m 3 × 100 = 40 . 9 .% size 12{ size 11{"percent relative humidity"= { { size 11{9 "." "40 g/m" rSup { size 8{3} } }} over { size 12{"23" "." "0 g/m" rSup { size 8{3} } } } } ´"100"="40" "." 9% "." }} {}

(b) The air contains 9 . 40 g/m 3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} of water vapor. The relative humidity will be 100% at a temperature where 9 . 40 g/m 3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} is the saturation density. Inspection of [link] reveals this to be the case at 10 . 0 º C size 12{"10" "." 0°C} {} , where the relative humidity will be 100%. That temperature is called the dew point for air with this concentration of water vapor.

(c) Here, the dew point temperature is given to be 10 . 0 º C size 12{ +- "10" "." 0°C} {} . Using [link] , we see that the vapor density is 2 . 36 g/m 3 size 12{2 "." "36 g/m" rSup { size 8{3} } } {} , because this value is the saturation vapor density at 10 . 0 º C size 12{ +- "10" "." 0°C} {} . The saturation vapor density at 25 . 0 º C size 12{"25" "." 0°C} {} is seen to be 23 . 0 g/m 3 size 12{"23" "." "0 g/m" rSup { size 8{3} } } {} . Thus, the relative humidity at 25 . 0 º C size 12{"25" "." 0°C} {} is

percent relative humidity = 2 . 36 g/m 3 23 . 0 g/m 3 × 100 = 10 . 3 % . size 12{ size 11{"percent relative humidity"= { { size 11{2 "." "36 g/m" rSup { size 8{3} } }} over { size 12{"23" "." "0 g/m" rSup { size 8{3} } } } } ×"100"="10" "." 3% "." }} {}

Discussion

The importance of dew point is that air temperature cannot drop below 10 . 0 º C size 12{"10" "." 0°C} {} in part (b), or 10 . 0 º C size 12{ +- "10" "." 0°C} {} in part (c), without water vapor condensing out of the air. If condensation occurs, considerable transfer of heat occurs (discussed in Heat and Heat Transfer Methods ), which prevents the temperature from further dropping. When dew points are below 0 ºC size 12{0°C} {} , freezing temperatures are a greater possibility, which explains why farmers keep track of the dew point. Low humidity in deserts means low dew-point temperatures. Thus condensation is unlikely. If the temperature drops, vapor does not condense in liquid drops. Because no heat is released into the air, the air temperature drops more rapidly compared to air with higher humidity. Likewise, at high temperatures, liquid droplets do not evaporate, so that no heat is removed from the gas to the liquid phase. This explains the large range of temperature in arid regions.

Why does water boil at 100 º C size 12{"100"°C} {} ? You will note from [link] that the vapor pressure of water at 100 º C size 12{"100"°C} {} is 1 . 01 × 10 5 Pa size 12{1 "." "01"´"10" rSup { size 8{5} } " Pa"} {} , or 1.00 atm. Thus, it can evaporate without limit at this temperature and pressure. But why does it form bubbles when it boils? This is because water ordinarily contains significant amounts of dissolved air and other impurities, which are observed as small bubbles of air in a glass of water. If a bubble starts out at the bottom of the container at 20 º C size 12{"20"°C} {} , it contains water vapor (about 2.30%). The pressure inside the bubble is fixed at 1.00 atm (we ignore the slight pressure exerted by the water around it). As the temperature rises, the amount of air in the bubble stays the same, but the water vapor increases; the bubble expands to keep the pressure at 1.00 atm. At 100 º C size 12{"100"°C} {} , water vapor enters the bubble continuously since the partial pressure of water is equal to 1.00 atm in equilibrium. It cannot reach this pressure, however, since the bubble also contains air and total pressure is 1.00 atm. The bubble grows in size and thereby increases the buoyant force. The bubble breaks away and rises rapidly to the surface—we call this boiling! (See [link] .)

Questions & Answers

fersnels biprism spectrometer how to determined
Bala Reply
how to study the hall effect to calculate the hall effect coefficient of the given semiconductor have to calculate the carrier density by carrier mobility.
Bala
what is the difference between atomic physics and momentum
Nana Reply
find the dimensional equation of work,power,and moment of a force show work?
Emmanuel Reply
What's sup guys
Peter
cul and you all
Okeh
cool you bro
Nana
so what is going on here
Nana
hello peeps
Joseph
Michelson Morley experiment
Riya Reply
how are you
Naveed
am good
Celine
you
Celine
hi
Bala
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
2.68m/s
Doc
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
babar
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
babar
how 2.68
babar
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
Eklu
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
Bala
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
KgM2S2
Acquah
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
kk
Doc
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
Fagbenro
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
Devansh
K
Manyo
thanks jare
Doc
Thanks
AMADI
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
AMADI
what is physic
zalmia Reply
please gave me answar
zalmia
Study of matter and energy
Fagbenro
physics is the science of matter and energy and their interactions
Acquah
physics is the technology behind air and matter
Doc
Okay
William
hi sir
Bala
how easy to understanding physics sir
Bala
Easy to learn
William
31. Calculate the initial (from rest) acceleration of a proton in a 5.00×106 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
Catina Reply
A tennis ball is projected at an angle and attains a range of 78. if the velocity is 30metres per second, calculate the angle
Shimolla
what friction
Wisdom Reply
question on friction
Wisdom
the rubbing of one object or surface against another.
author
momentum is the product of mass and it's velocity.
Algayawi
what are bioelements?
Edina
Friction is a force that exist between two objects in contact. e.g. friction between road and car tires.
Eklu
With regards to a shielded cable, is there an induced current on the shield when the center conductor is carrying an AC Current? What is the formula?
John Reply
what is phenomena
remilekun Reply
no idea
Awoke
its phenomenon, an observable fact.
author
Mujy achy marks hasil krny k leay kesy tayari krni ho ge?plz help me I'M sooo woried
Imran Reply
konsi university m ho and konsa course h
Mohit
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask