# 12.6 Motion of an object in a viscous fluid

 Page 1 / 4
• Calculate the Reynolds number for an object moving through a fluid.
• Explain whether the Reynolds number indicates laminar or turbulent flow.
• Describe the conditions under which an object has a terminal speed.

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to predict when a moving object creates turbulence. We use another form of the Reynolds number ${N\prime }_{\text{R}}^{}$ , defined for an object moving in a fluid to be

${N\prime }_{\text{R}}^{}=\frac{\rho \text{vL}}{\eta }\text{(object in fluid),}$

where $L$ is a characteristic length of the object (a sphere’s diameter, for example), $\rho$ the fluid density, $\eta$ its viscosity, and $v$ the object’s speed in the fluid. If ${N\prime }_{\text{R}}^{}$ is less than about 1, flow around the object can be laminar, particularly if the object has a smooth shape. The transition to turbulent flow occurs for ${N\prime }_{\text{R}}^{}$ between 1 and about 10, depending on surface roughness and so on. Depending on the surface, there can be a turbulent wake behind the object with some laminar flow over its surface. For an ${N\prime }_{\text{R}}^{}$ between 10 and ${\text{10}}^{6}$ , the flow may be either laminar or turbulent and may oscillate between the two. For ${N\prime }_{\text{R}}^{}$ greater than about ${\text{10}}^{6}$ , the flow is entirely turbulent, even at the surface of the object. (See [link] .) Laminar flow occurs mostly when the objects in the fluid are small, such as raindrops, pollen, and blood cells in plasma.

## Does a ball have a turbulent wake?

Calculate the Reynolds number ${N\prime }_{\text{R}}^{}$ for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use ${N\prime }_{\text{R}}^{}=\frac{\rho \text{vL}}{\eta }$ to calculate ${N\prime }_{\text{R}}^{}$ , since all values in it are either given or can be found in tables of density and viscosity.

Solution

Substituting values into the equation for ${N\prime }_{\text{R}}^{}$ yields

$\begin{array}{lll}{N\prime }_{R}^{}& =& \frac{\rho \text{vL}}{\eta }=\frac{\left(1\text{.}\text{29}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left(\text{40.0 m/s}\right)\left(\text{0.0740 m}\right)}{1.81×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}1.00 Pa\cdot \text{s}}\\ & =& 2.11×{\text{10}}^{5}\text{.}\end{array}$

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

One of the consequences of viscosity is a resistance force called viscous drag     ${F}_{\text{V}}$ that is exerted on a moving object. This force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown that for laminar flow ( ${N\prime }_{\text{R}}^{}$ less than about one) viscous drag is proportional to speed, whereas for ${N\prime }_{\text{R}}^{}$ between about 10 and ${\text{10}}^{6}$ , viscous drag is proportional to speed squared. (This relationship is a strong dependence and is pertinent to bicycle racing, where even a small headwind causes significantly increased drag on the racer. Cyclists take turns being the leader in the pack for this reason.) For ${N\prime }_{\text{R}}^{}$ greater than ${\text{10}}^{6}$ , drag increases dramatically and behaves with greater complexity. For laminar flow around a sphere, ${F}_{\text{V}}$ is proportional to fluid viscosity $\eta$ , the object’s characteristic size $L$ , and its speed $v$ . All of which makes sense—the more viscous the fluid and the larger the object, the more drag we expect. Recall Stoke’s law ${F}_{\text{S}}=6\mathrm{\pi r\eta v}$ . For the special case of a small sphere of radius $R$ moving slowly in a fluid of viscosity $\eta$ , the drag force ${F}_{\text{S}}$ is given by

An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
How electric lines and equipotential surface are mutually perpendicular?
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
what Is linear momentum
why no diagrams
where
Fayyaz
Myanmar
Pyae
hi
Iroko
hello
Abdu
Describe an experiment to determine short half life
what is science
it's a natural phenomena
Hassan
sap
Emmanuel
please can someone help me with explanations of wave
Benedine
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
what is physics
it is the science which we used in our daily life
Sujitha
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Junior
it is branch of science which deals with study of happening in the human life
AMIT
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Musa
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Kelly
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Yes, It is possible by conduction if Surface is Adiabatic
Astronomy
Yeah true ilwith d help of Adiabatic
Kelly
what are the fundamentals qualities
what is physic3
Kalilu
what is physic
Kalilu
Physics? Is a branch of science dealing with matter in relation to energy.
Moses
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
Moses
are you asking for qualities or quantities?
Noman
give examples of three dimensional frame of reference
Universe
Noman
Yes the Universe itself
Astronomy
Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces designed as they are? What differences will dry and wet conditions make for these surfaces?
sports shoes are designed in such a way they are gripped well with your feet and their bases have and high friction surfaces, Thong shoes are for comfort, these are easily removed and light weight. these are usually low friction surfaces but in wet conditions they offer greater friction.
Noman
thong sleepers are usually used in restrooms.
Noman
what is wave
The phenomenon of transfer of energy
Noman
how does time flow in one dimension
yeah that was a mistake
Lord
if it flows in three dimensions does it mean if an object theoretically moves beyond the speed of light it won't experience time
Lord
but if an object moves beyond the speed of light time stops right for it
Lord
yes but at light speed it ceases
Lord
yes it always flow from past to future.
Noman