<< Chapter < Page Chapter >> Page >
  • Calculate the Reynolds number for an object moving through a fluid.
  • Explain whether the Reynolds number indicates laminar or turbulent flow.
  • Describe the conditions under which an object has a terminal speed.

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to predict when a moving object creates turbulence. We use another form of the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , defined for an object moving in a fluid to be

N R = ρ vL η (object in fluid), size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {}

where L size 12{L} {} is a characteristic length of the object (a sphere’s diameter, for example), ρ size 12{ρ} {} the fluid density, η size 12{η} {} its viscosity, and v size 12{v} {} the object’s speed in the fluid. If N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is less than about 1, flow around the object can be laminar, particularly if the object has a smooth shape. The transition to turbulent flow occurs for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 1 and about 10, depending on surface roughness and so on. Depending on the surface, there can be a turbulent wake behind the object with some laminar flow over its surface. For an N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow may be either laminar or turbulent and may oscillate between the two. For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than about 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow is entirely turbulent, even at the surface of the object. (See [link] .) Laminar flow occurs mostly when the objects in the fluid are small, such as raindrops, pollen, and blood cells in plasma.

Does a ball have a turbulent wake?

Calculate the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use N R = ρ vL η size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {} to calculate N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , since all values in it are either given or can be found in tables of density and viscosity.

Solution

Substituting values into the equation for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} yields

N R = ρ vL η = ( 1 . 29 kg/m 3 ) ( 40.0 m/s ) ( 0.0740 m ) 1.81 × 10 5 1.00 Pa s = 2.11 × 10 5 .

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Got questions? Get instant answers now!

One of the consequences of viscosity is a resistance force called viscous drag     F V size 12{F rSub { size 8{V} } } {} that is exerted on a moving object. This force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown that for laminar flow ( N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than about one) viscous drag is proportional to speed, whereas for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between about 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , viscous drag is proportional to speed squared. (This relationship is a strong dependence and is pertinent to bicycle racing, where even a small headwind causes significantly increased drag on the racer. Cyclists take turns being the leader in the pack for this reason.) For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , drag increases dramatically and behaves with greater complexity. For laminar flow around a sphere, F V size 12{F rSub { size 8{V} } } {} is proportional to fluid viscosity η size 12{η} {} , the object’s characteristic size L size 12{L} {} , and its speed v size 12{v} {} . All of which makes sense—the more viscous the fluid and the larger the object, the more drag we expect. Recall Stoke’s law F S = 6 πrηv size 12{F rSub { size 8{S} } =6πrηv} {} . For the special case of a small sphere of radius R size 12{R} {} moving slowly in a fluid of viscosity η size 12{η} {} , the drag force F S size 12{F rSub { size 8{S} } } {} is given by

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask